Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T08:42:02.625Z Has data issue: false hasContentIssue false

Basic features of correlated ion stopping in plasmas

Published online by Cambridge University Press:  09 March 2009

Günter Zwicknagel
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Bâtiment 212, Université Paris XI, F-91405 Orsay, France
Claude Deutsch
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Bâtiment 212, Université Paris XI, F-91405 Orsay, France

Abstract

We reconsider correlated ion stopping in plasmas with the aim to emphasize the basic features and their underlying physics. For a better understanding of the effects connected with correlated ion stopping, it is useful to distinguish two types of correlated ion stopping, characterized by a small or large ratio of the correlation length of the ions to the screening length in the plasma. These two types of correlated ion stopping are of rather different character. We describe and explain these differences and give some generic examples of ion structures and ion clusters to demonstrate the basic features of both types of correlated stopping. This shows that only the short-range correlations always yield an enhanced stopping, whereas the long-range correlations, in general, reduce the stopping compared to single, individual ions. We mainly consider classical plasmas; the basic features, however, remain unchanged for a jellium target as well as for a plasma at any degeneracy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arista, N.R. 1978 Phys. Rev. B 18, 1.CrossRefGoogle Scholar
Arista, N.R. & Gras-Marti, A. 1991 J. Phys. Condens. Matter 3, 7931.Google Scholar
Basbas, G. & Ritchie, R.H. 1982 Phys. Rev. A 25, 1943.Google Scholar
Bret, A. & Deutsch, C. 1993 Phys. Rev. E 47, 1276.CrossRefGoogle Scholar
Deutsch, C. & Tahir, N.A. 1992 Phys. Fluids B 4, 3735.CrossRefGoogle Scholar
Deutsch, C. 1995 Phys. Rev. E 51, 619.CrossRefGoogle Scholar
Deutsch, C. & Fromy, P. 1995 Phys. Rev. E 51, 632.Google Scholar
D'Avanzo, J. et al. 1992 Phys. Rev. A 45, 6126.CrossRefGoogle Scholar
D'Avanzo, J. et al. 1993a Phys. Rev. E 45, 3574.CrossRefGoogle Scholar
D'Avanzo, J. et al. 1993b Il Nuovo Cimento 106A, 1803.CrossRefGoogle Scholar
Eliezer, S. et al. 1995 Laser Part. Beams 13, 43.CrossRefGoogle Scholar
Fried, B.D. & Conte, S.D. 1961 The Plasma Dispersion Function (Academic Press, New York).Google Scholar
Gouedard, C. & Deutsch, C. 1978 J. Math. Phys. 19, 32.CrossRefGoogle Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics (Benjamin, Reading, MA).Google Scholar
Nardi, E. et al. 1993 Il Nuovo Cimento 106A, 1839.CrossRefGoogle Scholar
Nardi, E. & Zinamon, Z. 1995 Laser Part. Beams 13, 335.CrossRefGoogle Scholar
Peter, Th. & Meyer-Ter-Vehn, J. 1991 Phys. Rev. A 43, 1998; 43, 2015.Google Scholar
Vicanek, M. et al. 1992 Phys. Rev. A 46, 5745.CrossRefGoogle Scholar
Zwicknagel, G. 1994 Ph.D. Thesis, Universität Erlangen.Google Scholar
Zwicknagel, G. et al. 1995 Laser Part. Beams 13, 311.CrossRefGoogle Scholar