Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T04:25:22.207Z Has data issue: false hasContentIssue false

Application of Hartree-Fock theory of fluctuations to opacity calculation

Published online by Cambridge University Press:  09 March 2009

T. Blenski
Affiliation:
IGA, Département de Physique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
S. Morel
Affiliation:
IGA, Département de Physique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Abstract

The Hartree-Fock theory of fluctuations leading to simple formulae for configuration probabilities is used in a Detailed Configuration Accounting calculation of opacity in the case of an iron plasma. A direct Detailed Term Accounting method is also applied. The correlations of subshell occupation numbers, which are accounted for in the HF theory, show small effect on the theoretical spectrum corresponding to conditions of a recent measurement.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bauche, J. et al. 1979 Phys. Rev. A 20, 3183.Google Scholar
Bauche, J. et al. 1988 Adv. Atom. Molec. Phys. 23, 131.CrossRefGoogle Scholar
Blenski, T. & Cichocki, B. 1990 Phys. Rev. A 41, 6973.CrossRefGoogle Scholar
Blenski, T. & Cichocki, B. 1992 Laser Part. Beams, 10, 303.Google Scholar
Blenski, T. & Morel, S. 1993 Nuovo Cimento A 106, 1781.Google Scholar
Blenski, T. & Morel, S. 1995 in preparation.Google Scholar
Cowan, R.D. 1981 The Theory of Atomic Structure and Spectra (University of California Press, Berkeley).Google Scholar
Crowley, B.J.B. 1990 Phys. Rev. A 41, 2179.CrossRefGoogle Scholar
Da Silva, L.B. et al. 1992 Phys. Rev. Lett. 69, 438.Google Scholar
Felderhof, B.U. 1969 J. Math. Phys. 10, 1021.Google Scholar
Fetter, A.L. & Walecka, J.D. 1971 Quantum Theory of Many-Particle Systems (McGraw-Hill, New York).Google Scholar
Goldberg, A. et al. 1986 Phys. Rev. A 34, 421.Google Scholar
Grimaldi, F. & Grimaldi-Lecourt, A. 1982 J. Quant. Spectros. Radiat. Transfer 27, 373.Google Scholar
(See also Grimaldi, F., In Proceedings of Conferences on Radiative Properties of Hot Dense Matter, Sarasota (1985, 1992).Google Scholar
Grimaldi, F. et al. 1985 Phys. Rev. A 32, 1063.CrossRefGoogle Scholar
Iglesias, C.A. et al. 1987 Ap. J., 322, L45.Google Scholar
Landau, L. & Lifchitz, E. 1967 Physique Statistique (Editions Mir, Moscou).Google Scholar
Mahan, G.D. & Subbaswamy, K.R. 1990 Local Density Theory of Polarizability (Plenum,New York).Google Scholar
Mermin, N.D. 1963 Ann Phys. (N. Y.) 21, 99.Google Scholar
More, R.M. 1985 Adv. At. Mol. Phys. 21, 305.Google Scholar
Rozsnyai, B.F. 1972 Phys. Rev. A 5, 1137.Google Scholar
Rozsnyai, B.F. 1977 J. Quant. Spectros. Radiat. Transfer 17, 77.Google Scholar
Perrot, F. 1988 Physica A 150, 357.Google Scholar
Wilson, B.G. 1993 J. Quant. Spectrosc. Radiat. Transfer 49, 241.Google Scholar