Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T04:51:17.747Z Has data issue: false hasContentIssue false

Analytical study of recombination X-ray lasers in an adiabatic expanding plasma

Published online by Cambridge University Press:  09 March 2009

Yuelin Li*
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, P.O. Box 800–211, Shanghai 201800, China
*
1Correspondence address: Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Max-Wien- Platz 1, D-07743 Jena, Germany. Fax: 0049–3641–636278.

Abstract

The collisional recombination process in highly ionized plasma and relevant reheating of the plasma are analyzed in the parameter regime appropriate for X-ray lasing. A method for describing the rate of collisional recombination is proposed based on a compact threelevel atomic model. Reheating of the plasma due to collisional recombination is described by a time-dependent adiabatic exponent γ. Using a self-similar description of the free expanding plasma, the gain of recombination lasing is investigated. In comparison with an open two-level atomic model, the present model gives lower gains appearing later in time. The inclusion of plasma reheating reduces the peak gain and shifts it to later times. Although the three-level model is shown to give a good qualitative description of the atomic processes, a considerable discrepancy was observed when compared with simulations for hydrogenlike carbon.

Type
Regular Papers
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blaha, M. 1969 Astrophys. J. 157, 473.CrossRefGoogle Scholar
Borovskii, A.V. et al. 1985a Sov. J. Quantum Electron 15, 185.CrossRefGoogle Scholar
Borovskii, A.V. et al. 1985b Sov. J. Quantum Electron 15, 1623.CrossRefGoogle Scholar
Chenais-Popovics, C. et al. 1987 Phys. Rev. Lett. 59, 2161.CrossRefGoogle Scholar
Eder, D.C. 1989 Phys. Fluids B 1, 2462.CrossRefGoogle Scholar
Fabbro, R. et al. 1985 Phys. Fluids 28, 1463.CrossRefGoogle Scholar
Goodwin, D.G. & Fill, E.E. 1988 J. Appl. Phys. 64, 1005.CrossRefGoogle Scholar
Grande, M. et al. 1990 Opt. Commun. 74, 309.CrossRefGoogle Scholar
Griem, H. 1964 Plasma Spectroscopy (McGraw-Hill Book Company, New York) p. 162.Google Scholar
Griem, H. 1974 Spectral Line Broadening by Plasmas (Academic Press, New York).Google Scholar
Gulov, A.V. et al. 1990 Sov. J. Quantum Electron. 20, 965.CrossRefGoogle Scholar
Hinnov, E. & Hirschberg, J.G. 1962 Phys. Rev. 125, 795.CrossRefGoogle Scholar
Jaeglé, P. et al. 1987 J. Opt. Soc., Am. B 4, 563.CrossRefGoogle Scholar
Jamelot, G. et al. 1992 X-Ray Laser 1992, Fill, E.E., ed. (IOP Publishing Ltd., Bristol), p. 89.Google Scholar
Kato, Y. et al. 1990 Appl. Phys. B 50, 247.CrossRefGoogle Scholar
Li, Y. & Zhang, J. 1994 J. Phys. D 27, 707.CrossRefGoogle Scholar
Makhrov, V. et al. 1994 J. Phys. B 27, 1899.CrossRefGoogle Scholar
Matthews, D.L. et al. 1985 Phys. Rev. Lett. 54, 110.CrossRefGoogle Scholar
Max, C.E. 1982 Laser Plasma Interaction, Balian, R. and Adam, J.-C., eds. (North-Holland Publishing Co., Amsterdam), p. 306.Google Scholar
Pert, G.J. 1976 J. Phys. B: Atom. Molec. Phys. 9, 3301.CrossRefGoogle Scholar
Pert, G.J. 1987 J. Opt. Soc. Am. B 4, 602.CrossRefGoogle Scholar
Pert, G.J. 1990 X-Ray Laser 1990, Tallents, G.J., ed. (IOP Publishing Ltd., Bristol), p. 143.Google Scholar
Pert, G.J. & Rose, S.J. 1990 Appl. Phys. B 50, 307.CrossRefGoogle Scholar
Van Regemorter, H. 1962 Astrophys. J. 136, 906.CrossRefGoogle Scholar
Sasaki, A. et al. 1994 J. Quant. Spectrosc. Radiat. Transfer 51, 335.CrossRefGoogle Scholar
Seaton, M.J. 1962 Atomic and Molecular Processes, Bates, D.R., ed. (Academic Press, New York).Google Scholar
Sobel'man, I.I. et al. 1981 Excitation ofAtoms and Broadening of Spectral Lines (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Solovev, N.A. & Fedotov, M.A. 1989 Opt. Spectrosc. 65, 409.Google Scholar
Steingruber, J. & Fill, E.E. 1994 Appl. Phys. B 58, 29.CrossRefGoogle Scholar
Suckewer, S. et al. 1985 Phys. Rev. Lett. 55, 1753.CrossRefGoogle Scholar
Tallents, G.J. 1985 Laser & Part. Beams 3, 475.CrossRefGoogle Scholar
Tragin, N. et al. 1990 J. Modern Opt. 37, 435.CrossRefGoogle Scholar
Wiese, W.L. et al. 1966 Atomic Transition Probabilities (National Bureau of Standards, Washington), Vol. 1.Google Scholar
Xu, Z.Z. et al. 1993 Appl. Phys. Lett. 63, 1023.CrossRefGoogle Scholar
Zel'dovich, Y.B. & Raizer, Y.P. 1966 Physics of Shockwaves and High Temperature Hydrodynamic Phenomena (Academic Press, New York), Vol. 1, p. 407.Google Scholar
Zhang, J. & Key, M.H. 1993 Appl. Phys. B 58, 13.CrossRefGoogle Scholar
Zhang, J. et al. 1995 Phys. Rev. Lett. 74, 1335CrossRefGoogle Scholar