Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T02:27:13.590Z Has data issue: false hasContentIssue false

Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse

Published online by Cambridge University Press:  06 March 2006

S. GLOWACZ
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland School of Quantitative Methods and Mathematical Sciences, University of Western Sydney, Penrith, Australia
H. HORA
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
J. BADZIAK
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
S. JABLONSKI
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland School of Quantitative Methods and Mathematical Sciences, University of Western Sydney, Penrith, Australia
YU CANG
Affiliation:
School of Quantitative Methods and Mathematical Sciences, University of Western Sydney, Penrith, Australia Institute of Physics, Chinese Academy of Sciences, Beijing, China
F. OSMAN
Affiliation:
School of Quantitative Methods and Mathematical Sciences, University of Western Sydney, Penrith, Australia

Abstract

In this paper we present the analytical description of two processes dealing with the skin-layer ponderomotive acceleration method of fast ion generation by a short laser pulse: ion density rippling in the underdense plasma region and generation of ion beams by trapped electromagnetic field in plasma. Some numerical examples of hydrodynamic simulation illustrating these processes are shown. The effect of using the laser pulse consisting of different frequency components on the ion density rippling and on phenomena connected with trapped electromagnetic field is analyzed.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asthana, M.V., Giulietti, A., Giulietti, L.A. & Sodha, M.S. (2000). Relativistic interaction of rippled laser beams with plasmas. Laser Part. Beams 18, 399403.Google Scholar
Badziak, J., Glovacz, S.G., Jablonski, S., Parya, P., Wolowsk, J. & Hora, H. (2004a). Production of ultrahigh-current-density ion beams by short-pulse skin-layer laser-plasma interaction. Appl. Phys. Lett. 85, 30423047.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Paris, P., Wolowski J., Kraska, J., Laska L., Rohlena, K. & Hora, H. (2004b). Production of ultrahigh ion current densities at Akin-Layer subrelativistic laser-plasma interaction. Plasma Phys. Contr. Fusion 46, B541B555.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys., P., Wolowski, J. & Hora, H. (2005). Laser driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401409.Google Scholar
Bauer, D. (2003). Plasma formation through field ionization intense laser-matter interaction. Laser Part. Beams 21, 489495.Google Scholar
Boreham, B.W., Hora, H., Aydin, M., Eliezer, S., Goldsworthy, M.P., Gu Min, Ghatiak, A.K., Lalousis, P., Stening, R.J., Szichman, H., Luther-Davies, B., Baldwin, K.G.H., Maddever, R.A.M., &Rode, A.V. (1997). Beam smoothing and temporal effects: Optimized preparation of laser beam for direct drive inertial confinement fusion. Laser Part. Beams 15, 277295.Google Scholar
Cang, Y., Osman, F., Hora, H., Zhang, J., Badziak, J., Wolowski, J., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2005). Computations for nonlinear force driven plasma blocks by picosecond laser pulses for fusion. J. Plasma Phys. 71, 3551.Google Scholar
Deutsch, C. (2004). Penetration of intense charge particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Glowacz, S., Badziak, J., Jablonski, S. & Hora, H. (2004). Numerical investigation of generation of high-current ion beams by short-pulse laser plasma interaction. Czech. J. Phys. 54, C460.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy-loss of heavy-ions in a plasma target. Phys. Rev. A 42, 23132321.Google Scholar
Hora, H. & Aydin, M. (1992). Suppression of stochastic pulsation in laser-plasma interaction by smoothing methods. Phys. Rev. A 45, 61236126.Google Scholar
Hora, H. & Aydin, M. (1999). Increased gain for ICF with red light at suppression of stochastic pulsation by smoothing. Laser Part. Beams 17, 209215.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement, Laser Part. Beams 22, 439449.Google Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikowa, B., Kraska, J., Laska, L., Parys, P., Perina, V., Pfeifer, K. & Rohlena, J. (2002). Effects of ps and ns. laser pulses for giant ion source. Optics Commun. 207, 333338.Google Scholar
Jablonski, S., Hora, H., Glowacz, S., Badziak, J., Cang Yu., &Osman, F. (2005). Two-fluid computation of plasma block dynamics for numerical analyze of rippling effect. Laser Part. Beams 23, 433440.Google Scholar
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospectives. Laser Part. Beams 22, 512.Google Scholar
Mulser, P. & Schneider, R. (2004). On the inefficiency of hole boring in fast ignition. Laser Part. Beams 22, 157162.Google Scholar
Osman, F., Cang, Y., Hora, H., Cao, L.H., Liu, H., Badziak, J., Parys, A.B., Wolowski, J., Worya, E., Jungwirth, K., Kralikova, B., Kraska, J., Laska, M., Pfeifer, M., Rohlena, K., Skala, J. & Ullschmied, J. (2004). Skin depth plasma front interaction mechanism with prepulse suppression to avoid relativistic self-focusing for high-gain laser fusion. Laser Part. Beams 22, 8387.Google Scholar
Purohit, G., Pandey, H.D. & Sharma, R.P. (2003). Effect of cross focusing of two laser beams on the growth of laser ripple in plasma. Laser Part. Beams 21, 567572.Google Scholar
Ramirez, J., Ramis, R. & Sanz, J. (2004). One-dimensional model for a laser-ablated slab under acceleration. Laser Part. Beams 22, 183188.Google Scholar
Saini, M.S. & Gill, T.S. (2004). Enhanced raman scattering of a rippled laser beam in magnetized collisional plasma. Laser Part. Beams 22, 3540.Google Scholar