Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T21:17:15.516Z Has data issue: false hasContentIssue false

Analysis of the synchronization error measurement via non-collinear cross-correlation

Published online by Cambridge University Press:  29 April 2015

J. Mu
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China Science and Technology on Plasma Physics Laboratory, Mianyang, Sichuan, China
X. Wang
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China Science and Technology on Plasma Physics Laboratory, Mianyang, Sichuan, China
F. Jing*
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China Science and Technology on Plasma Physics Laboratory, Mianyang, Sichuan, China
Q.H. Zhu
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China Science and Technology on Plasma Physics Laboratory, Mianyang, Sichuan, China
J.Q. Su
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China Science and Technology on Plasma Physics Laboratory, Mianyang, Sichuan, China
J.W. Zhang
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China Science and Technology on Plasma Physics Laboratory, Mianyang, Sichuan, China
*
Address correspondence and reprint requests to: F. Jing, E-mail: [email protected]

Abstract

The method for measuring synchronization error of ultra-short pulses was introduced based on the principle of non-collinear cross-correlation. The analytical expression for the measurement was deduced according to the cross-correlation signal. The influences of angular error on the measurement were analyzed by simulated experiments. The incident angle and the angular error tolerance were both required to be considered and determined for the synchronization error measurement of ultra-short pulses. The results provide a theoretical basis for the measurement and control of the synchronization error in the coherent beam combination, plasma parameter diagnosis, etc.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banici, R. & Ursescu, D. (2011). Spectral combination of ultrashort laser pulses. Europhys. Lett. 94, 44002.CrossRefGoogle Scholar
Bashinov, A.V., Gonoskov, A.A., Kim, A.V., Mourou, G. & Sergeev, A.M. (2014). New horizons for extreme light physics with mega-science project XCELS. Eur. Phys. J. Special Topics 223, 11051112.CrossRefGoogle Scholar
Brun, A., Georges, P., Saux, G.L. & Salin, F. (1991). Single-shot characterization of ultrashort light pulses. Appl. Phys. 24, 12251233.Google Scholar
Chambaret, J.-P., Chekhlov, O., Chériaux, G., Collier, J., Dabu, R., Dombi, P., Dunne, A.M., Ertel, K., Georges, P., Hebling, J., Hein, J., Hernandez-Gomez, C., Hooker, C., Karsch, S., Korn, G., Krausz, F., Le Blanc, C., Major, Zs., Mathieu, F., Metzger, T., Mourou, G., Nickles, P., Osvay, K., Rus, B., Sandner, W., Szabó, G., Ursescu, D. & Varjú, K. (2010). Extreme Light Infrastructure: Laser architecture and major challenges. Proc. SPIE, 7721, 77211D.CrossRefGoogle Scholar
Ditmirea, T., Blessa, S., Dyera, G., Edensa, A., Grigsbya, W., Haysa, G., Madisona, K., Maltseva, A., Colvinb, J., Edwardsb, M.J., Leeb, R.W., Patelb, P., Priceb, D., Remingtonb, B.A., Sheppherdb, R., Woottonb, A., Zweibackc, J., Liangd, E. & Kielty, K.A. (2004). Overview of future directions in high energy-density and high-field science using ultra-intense lasers. Radiat. Phys. Chem. 70, 535552.CrossRefGoogle Scholar
Evans, J.M., Spence, D.E., Burns, D. & Sibbett, W. (1993). Dual-wavelength self-mode-locked Ti: Sapphire laser. Opt. Lett. 18, 10741076.CrossRefGoogle ScholarPubMed
Kim, J., Cox, J.A., Chen, J. & Kärtner, F.X. (2008). Drift-free femtosecond timing synchronization of remote optical and microwave sources. Nat. Photonics 2, 733736.CrossRefGoogle Scholar
Kong, H.J., Shin, J.S., Yoon, J.W., & Beak, D.H. (2009). Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors. Laser Part. Beams 27, 179184.CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Shin, J.S., Beak, D.H., & Lee, B.J. (2006). Long term stabilization of the beam combination laser with a phase controlled stimulated Brillouin scattering phase conjugation mirrors for the laser fusion driver. Laser Part. Beams 24, 519523.CrossRefGoogle Scholar
Le Blanc, S.P., Szabo, G. & Sauerbrey, R. (1991). Femtosecond single-shot phase-sensitive autocorrelator for the ultraviolet. Opt. Lett. 16, 15081510.CrossRefGoogle ScholarPubMed
Qiao, J., Jaanimagi, P.A., Boni, R., Bromage, J. & Hill, E. (2013). Measuring 8–250 ps short pulses using a high-speed streak camera on kilojoule, petawatt-class laser systems. Rev. Sci. Instrum. 84, 073104-1073104-5.CrossRefGoogle ScholarPubMed
Raghuramaiah, M., Sharma, A.K., Naik, P.A., Gupta, P.D. & Ganeev, R.A. (2001). A second-order autocorrelator for single-shot measurement of femtosecond laser pulse durations. Sādhanā 26, 603611.CrossRefGoogle Scholar
Salin, F., Georges, P., Roger, G. & Brun, A. (1987). Single-shot measurement of a 52-fs pulse. Appl. Opt. 26, 45284531.CrossRefGoogle ScholarPubMed
Shelton, R.K., Foreman, S.M., Ma, L.-S., Hall, J.L., Kapteyn, H.C., Murnane, M.M., Notcutt, M. & Ye, J. (2002). Subfemtosecond timing jitter between two independent, actively synchronized, mode-locked lasers. Opt. Lett. 27, 312314.CrossRefGoogle ScholarPubMed
Tajima, T. & Mourou, G. (2002). Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Phys. Rev. ST – Accel. Beams 5, 031301-1031301-9.CrossRefGoogle Scholar
Umstadter, D. (2001). Review of physics and applications of relativistic plasma driven by ultra-intense lasers. Phys. Plasmas 8, 17741785.CrossRefGoogle Scholar
Wei, Z., Kobayashi, Y., Zhang, Z. & Torizuka, K. (2001). Generation of two-color femtosecond pulses by self-synchronizing Ti: Sapphire and Cr: Forsterite lasers. Opt. Lett. 26, 18061808.CrossRefGoogle ScholarPubMed
Zewail, A.H. (1988). Laser femtochemistry. Science 242, 16451653.CrossRefGoogle ScholarPubMed