Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T15:29:22.945Z Has data issue: false hasContentIssue false

An ensemble of new techniques to study soft-X-ray-induced variations in cellular metabolism

Published online by Cambridge University Press:  01 July 2004

EDMOND TURCU
Affiliation:
Rutherford Appleton Laboratory, Chilton Didcot, UK
RICK ALLOT
Affiliation:
Rutherford Appleton Laboratory, Chilton Didcot, UK
NICOLA LISI
Affiliation:
Rutherford Appleton Laboratory, Chilton Didcot, UK
DIMITRI BATANI
Affiliation:
Dipartimento di Fisica, “G.Occhialini,” Università degli Studi di Milano–Bicocca, and INFM, Milano, Italy
FULVIA BORTOLOTTO
Affiliation:
Dipartimento di Fisica, “G.Occhialini,” Università degli Studi di Milano–Bicocca, and INFM, Milano, Italy
ALESSANDRA MASINI
Affiliation:
Dipartimento di Fisica, “G.Occhialini,” Università degli Studi di Milano–Bicocca, and INFM, Milano, Italy
MARZIALE MILANI
Affiliation:
Dipartimento di Scienza dei Materiali, Università degli Studi di Milano–Bicocca, and INFM, Milano, Italy
MONICA BALLERINI
Affiliation:
Dipartimento di Scienza dei Materiali, Università degli Studi di Milano–Bicocca, and INFM, Milano, Italy
LORENZO FERRARO
Affiliation:
Dipartimento di Scienza dei Materiali, Università degli Studi di Milano–Bicocca, and INFM, Milano, Italy
ACHILLE POZZI
Affiliation:
Dipartimento di Scienza dei Materiali, Università degli Studi di Milano–Bicocca, and INFM, Milano, Italy
FABIO PREVIDI
Affiliation:
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy
LORENZO REBONATO
Affiliation:
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy

Abstract

An ensemble of new techniques has been developed to study cell metabolism. These include: CO2 production monitoring, cell irradiation with soft X rays produced with a laser-plasma source, and study of oscillations in cell metabolic activity via spectral analysis of experimental records. Soft X-rays at about 0.9 keV, with a very low penetration in biological material, were chosen to produce damages at the metabolic level, without great interference with DNA activity. The use of a laser-plasma source allowed a fast deposition of high doses. Monitoring of CO2 production allowed us to measure cell metabolic response immediately after irradiation in a continuous and noninvasive way. Also a simple model was developed to calculate X-ray doses delivered to the different cell compartments following a Lambert–Bouguet–Beer law. Results obtained on Saccharomyces cerevisiae yeast cells in experiments performed at Rutherford Appleton Laboratory are presented.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexandropoulus, N.G. & Cohen, G.G. (1974). Appl. Spectr. 28, 2.
Aon, M.A., Cortassa, S., Westerhoff, H.V. & Van Dam, K. (1992). J. Gen. Microbiol., 138.
Batani, D., Masini, A., Milani, M., et al. (1996). Il Nuovo Cimento 18D, 657.
Batani, D., Milani, M., Masini, A., Pozzi, A., Costato, M., Turcu, E., Lisi, N., Allot, R., Lora Lamia Donin, C., Cotelli, F., Previdi, F., Faral, B., Conte, E., Moret, M. & Poletti, G. (1998). Characterisation of Saccharomyces cerevisiae yeast cells. Physica Medica 15, 151157.Google Scholar
Batani, D., Milani, M., Masini, A., Previdi, F., Turcu, E., et al. (1995). Laser Technol. 5, 3.
Batani, D., Turcu, E., Tallents, G.J., Giuliettti, A. & Palladino, L. (1991). SPIE Proc. 1503, 479.
Betz, A. (1968). In Quantitative Biology and Metabolism. (Locker, A., Ed.). Springer-Verlag.
Bijkerk, F., Louis, E., Van der Wiel, M., Turcu, E., Tallents, G.J. & Batani, D. (1992). J. X-ray Sci. Tech. 3, 133.
Boiteux, A., Goldbeter, A. & Hesse, B. (1975). Proc. Natl. Acad. Sci., USA 72, 1975.
Brillinger, D.R. (1981). Time Series: Data Analysis and Theory. San Francisco: Holden-Day.
Cameron, I.L. & Padilla, G.M. (1966). Cell Synchrony. New York: Academic Press.
Chance, B., Estabrook, R.W. & Ghosh, A. (1964). Proc. Natl. Acad. Sci., USA 51, 1964.
Con, R., Thacker, J. & Goodhead, D. (1977). Int. J. Radiat. Biol. 31, 561.
Cortassa, S. & Aon, M.A. (1994). Cell Biol. Int. 18, 687.
Costato, M., Masini, A., Michelini, A., Milani, M. & Pozzi, A. (1996). Laser Technol. 6, 85.
Frankenberg, D. & Goodhead, D.T., et al. (1986). Int. J. Radiat. Biol. 50, 727.
Fremter, E. (1983). In Biophysics (Hoppe, W. et al., Eds.). Berlin: Springer-Verlag.
Goodhead, D. (1977). Int. J. Radiat. Biol. 32, 43.
Goodhead, D. & Thacker, J. (1977). Int. J. Radiat. Biol. 31, 541.
Henke, B.L. (1986). In X-ray Data Booklet. (Vaughan, D., Ed.). Berkeley, CA: Center for X-ray optics.
Hesse, B. (1979). J. Exp. Biol. 81.
Klis, F.M. (1994). Yeast 10, 851.
Kockova-Kratochvilova, A. (1990). Yeast and Yeast-like Organisms. New York and Weinheim: VCH.
Ljung, L. (1987). System Identification: Theory for the User. Englewood Cliffs, NJ: Prentice-Hall.
Nicolis, G. & Prigogine, I. (1977). Self Organisation in Non Equilibrium Systems from Dissipative Structures to Order through Fluctuations. New York: Wiley & Sons Inc.
Rockett, P.D., Bird, C.R., Hailey, C.J., Sullivan, D., Brown, D.B. & Burkalter, P.G. (1985). Appl. Opt. 24, 2536.
Tuite, M.F. (1964). Nature 370, 327.
Tuite, M.F. & Oliver, S.G. (1991). Saccharomyces. New York: Plenum Press.
Turcu, E., Ross, I., Trenda, P., Schulz, M., Michette, A.G., Tallents, G.J., Batani, D., Wharton, C.W., Meldrum, R.A., et al. (1994a). SPIE Proc. 2015, 243.
Turcu, E., Tallents, G.J., Ross, I., Michette, A.G., Schulz, M., Meldrum, R.A., Wharton, C.W., Batani, D., Martinetti, M. & Mauri, A. (1994b). Physica Medica 10, 93.
Warburg, O. (1930). Metabolism of Tumor. London: Arnold Constable Publishers.
Weast, R.C. & Astle, M.J. (1983). Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press.
Winfree, A.T. (1983). The Geometry of Biological Time. Berlin: Springer-Verlag.