Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T05:43:51.150Z Has data issue: false hasContentIssue false

An approach to hydrogen production by inertial fusion energy

Published online by Cambridge University Press:  28 February 2007

K. IMASAKI
Affiliation:
Institute for Laser Technology, Osaka, Japan
D. LI
Affiliation:
Institute for Laser Technology, Osaka, Japan

Abstract

An approach to produce efficient and economical hydrogen, which is one of the solutions of future energy, by inertial fusion energy reactor is discussed. This fusion reactor is with magnetic field such as mirror machine and graphite solid blanket. Neutrons and charged particles from nuclear reactions are separated from each other by this magnetic field. This results in hydrogen production efficiently in a solid blanket of high temperature with a breakeven of electricity by direct conversion of charged particle. The output of hydrogen may meet not only economical issue but also ecological issues.

Type
Research Article
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baldwin, D.E. (1977). End-loss processes from mirror machines. Rev. Mod. Phys. 49, 317339.Google Scholar
Kilkenny, J.D., Alexander, N.B., Nikroo, A., Steinman, D.A., Nobile, A., Bernat, T., Cook, R., Letts, S., Takagi, M. & Harding, D. (2005). Laser targets compensate for limitations in inertial confinement fusion drivers. Laser Part. Beams 23, 475482.Google Scholar
Koresheva, E.R., Osipov, I.E. & Aleksandrova, I.V. (2005). Free standing target technologies for inertial fusion energy: Target fabrication, characterization, and delivery. Laser Part. Beams 23, 563571.Google Scholar
Lasche, G.P. (1983). The feasibility of a laser or charged-particle-beam fusion reactor concept with direct electric generation by magnetic flux compression. www.osti.gov/bridge/servlets/purl/13848-uHIrR7/native/13848.pdf
Leon, P.T., Eliezer, S., Piera, M. & Marinez-Val, J.M. (2005). Inertial fusion features in degenerate plasmas. Laser Part. Beams 23, 193198.Google Scholar
Logan, B.G., Bangerter, R.O., Callahan, D.A., Tabak, M., Roth, M., Perkins, L.J. & Caporaso, G. (2006). Assessment of potential for ion-driven fast ignition. Fusion Sci. Technol. 49, 399411.Google Scholar
Maniscalco, J., Blink, J., Buntzen, R., Hovingh, J., Meier, W., Monsler, M. & Walker, P. (1978). Civilian applications of laser fusion. http://www.osti.gov/energycitations/product.
Miley, G.H., Hora, H., Osman, F., Evans, P. & Toups, P. (2005). Single event laser fusion using ns-MJ laser pulses. Laser Part. Beams 23, 453460.Google Scholar
Moir, R.W., Barr, W.L. & Carlson, G.A. (1974). Direct conversion of plasma energy for mirror fusion reactor. http://adsabs.harvard.edu/abs/1974ppcn.confR....M
Nakatsuka, M. & Saiki, T. (2003). p. 77. Digest of Technical Papers, Osaka, Japan: The Laser Society of Japan.
Perlado, J.M., Sanz, J., Velarde, M., Reyes, S., Caturla, M.J., Arevalo, C., Cabellos, O., Dominguez, E., Marian, J., Martinez, E., Mota, F., Rodriguez, A., Salvador, M. & Velarde, G. (2005). Activation and damage of fusion materials and tritium effects in inertial fusion reactors: Strategy for adequate irradiation. Laser Part. Beams 23, 345349.Google Scholar
Ribe, F.L. (1975). Fusion reactor systems. Rev. Mod. Phys. 47, 741.Google Scholar
Steffen, W., Sanderson, A., Tyson, P.D., Jager, J., Matson, P.A., Moore III, B., Oldfield, F., Richardson, K., Schellnhuber, H.J., Turner II, B.L. & Wasson, R.J. (2005). Global Change and the Earth System. New York: Springer.