Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T02:52:01.908Z Has data issue: false hasContentIssue false

Adiabatic formulation of charged particle dynamics in an inhomogeneous electro-magnetic field

Published online by Cambridge University Press:  26 June 2013

Vikram Sagar*
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar, India
Sudip Sengupta
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar, India
Predhiman Kaw
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar, India
*
Address correspondence and reprint requests to: Vikram Sagar, Institute for Plasma Research, Bhat, Gandhinagar 382428, India. E-mail: [email protected]

Abstract

The relativistic motion of a charged particle is studied in an inhomogeneous field of finite duration laser pulse. An inhomogeneity in a laser field is due to the spatial variation of laser intensity. Such a variation in laser intensity is characteristic of focused and de-focused laser beams. In the presence of an inhomogeneity, the problem becomes non-integrable and hence particle dynamics can not be derived exactly. In the present work considering a slow variation in the laser intensity, it is shown that the particle dynamics is associated with an adiabatic invariant. It is further found that the adiabatic invariant itself evolves and in a typical example changes such that the adiabaticity parameter attains a value of order unity. Thus higher orders of invariance are required for specifying the particle dynamics in terms of an adiabatic invariant. An adiabatic formalism is derived using the Lie transform perturbation method for calculating the higher orders of invariance and to obtain the evolution of the adiabatic invariant. The estimates of energy gained by a particle considering focused laser field are obtained by solving the equation of motion numerically. On comparing the results of a numerical experiment with theoretical predictions, it is found that the energy estimates improve on taking into account higher orders of invariance predicted by the present theory.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acharya, S. & Saxena, A.C. (1993). The exact solution of the relativistic equation of motion of a charged particle driven by an elliptically polarized electromagnetic wave. IEEE Trans. Plasma Sci. 21, 257259.CrossRefGoogle Scholar
Angus, J. & Krasheninnikov, S. (2009). Energy gain of free electron in pulsed electromagnetic plane wave with constant external magnetic fields. Phys. Plasmas 16, 113103/1–10.CrossRefGoogle Scholar
Arnold, V.I. (1988). Dynamical Systems III. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Boccaletti, D. & Pucacco, G. (2002). Theory of Orbits. New York: Springer-Verlag.Google Scholar
Bourdier, A. & Drouin, M. (2009). Dynamics of a charged particle in progressive plane waves propagating in vacuum or plasma: Stochastic acceleration. Laser Part. Beams 27, 545567.CrossRefGoogle Scholar
Bourdier, A. & Patin, D. (2005). Dynamics of a charged particle in a linearly polarized traveling wave. Euro. Phys. J. D. 32, 361376.CrossRefGoogle Scholar
Bourdier, A. (2009). Dynamics of a charged particle in a progressive plane wave. Phys. D 238, 226232.CrossRefGoogle Scholar
Bulanov, S.V. & Prokhorov, A.M. (2006). New epoch in the charged particle acceleration by relativistically intense laser radiation. Plasma Phys. Contr. Fusion 48, B29B37.CrossRefGoogle Scholar
Cary, John. R. (1981). Lie transform perturbation theory for Hamiltonian systems. 79, 129159.Google Scholar
Deprit, A. (1969). Canonical Transformations Depending On A Small Parameter. Celestial Mechanics 1, 1230.CrossRefGoogle Scholar
Dragt, A.J. & Finn, J.M. (1976). Lie Series And Invariant Functions For Analytic Simplistic Maps. J. Math. 17, 22152228.Google Scholar
Esarey, E., Sprangle, P. & Krall, P. (1995). Laser acceleration of electrons in vacuum. Phys. Rev. E 52, 54435453.CrossRefGoogle ScholarPubMed
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Gahn, C., Pretzler, G., Saemann, A., Tsakiris, G.D., Witte, K.J., Gassmann, D., Schatz, T., Schramn, U., Thirolf, P. & Habs, D. (1998). MeV-ray yield from solid targets irradiated with fs-laser pulses. Appl. Phys. Lett. 73, 36623664.CrossRefGoogle Scholar
Gibbon, P. (2005). Short Pulse Laser Interaction with Matter-An Introduction. London: Imperial College Press.Google Scholar
Giulietti, D.M., Galimberti, A., Giulietti, L.A., Gizzi, L. & Tomassini, P. (2005). The laser-matter interaction meets the high energy physics: Laser-plasma accelerators and bright x/gamma-ray sources. Laser Part. Beams 23, 309314.CrossRefGoogle Scholar
Goldstein, H. (1980). Classical Mechanics. Reading: Addison-Wesley.Google Scholar
Hartemann, F.V., Fochs, S.N., Le Sage, G.P., Luhmann, N.C. Jr., Woodworth, J.G., Perry, M.D., Chen, Y.J. & Kerman, A.K. (1995). Nonlinear ponderomotive scattering of relativistic electrons by an intense laser field at focus. Phys. Rev. E 51, 48334843.CrossRefGoogle ScholarPubMed
Hauser, T., Scheid, W. & Hora, H. (1994). Acceleration of electrons by intense laser pulses in vacuum. Phys. Lett. A 186, 189192.CrossRefGoogle Scholar
Kaw, P.K. & Kulsrud, R.M. (1973). Relativistic acceleration of charged particles by superintense laser beams. Phys. Fluids 16, 321328.CrossRefGoogle Scholar
Kominis, Y. (2008). Nonlinear Theory of Cyclotron Resonant Wave Particle Interactions: Analytical Results beyond the Quasi-Linear Approximation. Phys. Rev. E 77, 016404.CrossRefGoogle Scholar
Kroll, Norman M. & Watson, Kenneth M. (1973). Charged-particle scattering in the presence of a strong electromagnetic wave. Phys. Rev. A 8, 804809.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. (1975). The Classical Theory of Fields. Oxford: Pergamon, Oxford.Google Scholar
Lichtenber, A.J. & Liebermann, M.A. (1983). Regular and Stochastic Motion. New York: Springer-Verlag.CrossRefGoogle Scholar
Louisell, William H., Lam, J.F., Copeland, D.A. & Colson, W.B. (1979). “Exact” classical electron dynamic approach for a free-electron laser amplifier. Phys. Rev. A 19, 288300.CrossRefGoogle Scholar
Malka, G., Lefebvre, E. & Miquel, J.L. (1997). Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser. Phys. Rev. Lett. 78, 33143317.CrossRefGoogle Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M., Burgy, F., Chambaret, J.-P., Chemin, J.-F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.-P., Scheurer, J.-N., Walton, B. & Dangor, A.E. (2002). Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 15961600.CrossRefGoogle ScholarPubMed
Mao, Q.Q., Kong, Q., Ho, Y.K., et al. (2010). Radiative reaction effect on electron dynamics in an ultra-intense laser field. Lasers Part. Beams 28, 8390.CrossRefGoogle Scholar
Meyer-ter-vehn, J. & Sheng, Z.M. (1999). On electron acceleration by intense laser pulses in the presence of a stochastic field. Phys. Plasmas 6, 641644.CrossRefGoogle Scholar
Modena, A., Najmudin, Z., Dangor, A.E., Clayton, K.A., Marsh, C., Joshi, V., Malka, C.B., Darrow, C., Danson, Neely, D. & Walsh, F.N. (1995). Electron acceleration from the breaking of relativistic plasma waves. Nat. 377, 606608.CrossRefGoogle Scholar
Mora, P. & Quesnel, B. (1998). Comment on experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser. Phys. Rev. Lett. 80, 1351–1354.CrossRefGoogle Scholar
Norreys, P.A., Santala, M., Clark, E., Zepf, M., Watts, I., Beg, F.N., Krushelnick, K., Tatarakis, M., Dangor, A.E., Fang, X., Graham, P., Mccanny, T., Singhal, R.P., Ledingham, K.W.D., Creswell, A., Sanderson, D.C.W., Magill, J., Machacek, A., Wark, J.S., Allott, R., Kennedy, B. & Neely, D. (1999). Observation of a highly directional-ray beam from ultrashort, ultraintense laser pulse interactions with solids. Phys. Plasmas 6, 21502156.CrossRefGoogle Scholar
Ondarza, R. & Gomez, F. (2004). Exact solution of the relativistic equation of motion of a charged particle driven by an elliptically polarized electromagnetic shaped pulse propagating along a static and homogeneous magnetic field. IEEE Trans. Plasma Sci. 32, 808812.CrossRefGoogle Scholar
Parker, E.N. (1961). Transresonant electron acceleration. J. Geophys. Res. 66, 26732676.CrossRefGoogle Scholar
Patin, D., Bourdier, A. & Lefebvre, E. (2005). Stochastic heating in ultra high intensity laser-plasma interaction. Laser Part. Beams 23, 297302.Google Scholar
Perry, M.D. & Mourou, G. (1994). Terawatt to petawatt subpicosecond lasers. Sci. 264, 917924.CrossRefGoogle ScholarPubMed
Quensal, B. & Mora, P. (1998). Theory and simulation of the interaction of ultra intense laser pulses with electrons in vacuum. Phys. Rev. E 58, 37193732.Google Scholar
Rax, J.M. (1992). Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collision less damping with ultrahigh intensity laser waves. Phys. Fluids B 4, 39623972.CrossRefGoogle Scholar
Rosenbluth, M.N. & Liu, C.S. (1972). Excitation of plasma waves by two laser beams. Phys. Rev. Lett. 29, 701705.CrossRefGoogle Scholar
Sanderson, J.J. (1965). Corrections to Thompson scattering for intense laser beams. Phys. Lett. 8, 114115.CrossRefGoogle Scholar
Sarachick, E.S. & Schappert, G.T. (1970). Classical Theory Of The Scattering Of Intense Laser Radiation By Free Electrons. Phys. Rev. D. 1, 102738–2753.Google Scholar
Scully, M.O. & Zubairy, M.S. (1991). Simple laser accelerator: Optics and particle dynamics. Phys. Rev. A 44, 26562663.CrossRefGoogle ScholarPubMed
Singh, K.P., Gupta, D.N. & Sajal, V. (2009). Electron energy enhancement by a circularly polarized laser pulse in vacuum. Laser Part. Beams 27, 635642.CrossRefGoogle Scholar
Singh, K.P. (2005). Electron acceleration by a chirped short intense laser pulse in vacuum. Appl. Phys. Lett. 87, 254102.CrossRefGoogle Scholar
Sprangle, P., Esarey, E. & Krall, J. (1996). Laser driven electron acceleration in vacuum, gases, and plasmas. Phys. Plasmas Vol. 3, pp. 21832190.CrossRefGoogle Scholar
Strickland, J. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.CrossRefGoogle Scholar
Struckmeier, J. (2005). Hamiltonian dynamics on the symplectic extended phase space for autonomous and non-autonomous systems. J. Phys. A: Math. Gen. 38, 1257.CrossRefGoogle Scholar
Tabor, M. (1989). Chaos and Integrability in nonlinear dynamics. New York: John Wiley and Sons.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser Electron Accelerator. Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar
Tanimoto, M., Kato, S., Miura, E., Saito, N., Koyama, K. & Koga, J.K. (2003). Direct electron acceleration by stochastic laser fields in the presence of self-generated magnetic fields. Phys. Rev. E 68, 026401.CrossRefGoogle ScholarPubMed
Umstadter, D., Kim, J., Esarey, E., Dodd, E. & Neubert, T. (1995). Resonantly laser-driven plasma waves for electron acceleration. Phys. Rev. E. 51, 34843497.CrossRefGoogle ScholarPubMed
Umstadter, D. (2003). Relativistic laser-plasma interactions. J. Phys. D: Appl. Phys. 36, R151R165.CrossRefGoogle Scholar
Umstadter, D. (2001). Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas 8, 17741785.CrossRefGoogle Scholar
Vaschapati, (1962). Harmonics in the Scattering of Light by Free Electrons. Phys. Rev. 128, 664666.CrossRefGoogle Scholar
Wang, X., Du, H. & Hu, B. (2012). Electron Acceleration In Vacuum With Two Overlapping Linearly Polarized Laser Pulses. Laser Part. Beams. 30, 421425.CrossRefGoogle Scholar
Yang, J.H., Craxton, R.S. & Haines, M.G. (2011). Explicit general solutions to relativistic electron dynamics in plane-wave electromagnetic fields and simulations of ponderomotive acceleration. Plasma Phys. Control. Fusion 53, 125006.CrossRefGoogle Scholar