Published online by Cambridge University Press: 30 October 2012
X-ray emission from Kr13+ ions in the energy range 1.2–3.6 MeV in steps of 0.6 MeV impacting on an Au target was investigated on electron cyclotron resonance ion source at the Heavy Ion Research Facility in Lanzhou. It was found that a shift of the X-ray lines to the higher energy side occurred. We measured the relationship between the characteristic of X-ray yield of Au M X-rays and Kr L X-rays as a function of incident energy. Furthermore, M-shell X-ray production cross-section of Au induced by Kr13+ was measured. The measured cross-section of target is compared to the classical binary-encounter approximation and plane-wave-born approximation theoretical model, which is a significant different between experimental and theoretical model.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.