Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-03T05:31:15.028Z Has data issue: false hasContentIssue false

The velocity dependent Krook model to calculate energetic electron transport in a laser produced plasma

Published online by Cambridge University Press:  01 February 2013

Wallace Manheimer*
Affiliation:
Laser Plasma Branch, Plasma Physics Division, Naval Research Laboratory, Washington, D.C. and Research Support Instruments, Lanham, Maryland
*
Address correspondence and reprint requests to: Wallace Manheimer, Consultant to the Laser Plasma Branch, Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375. E-mail: [email protected]

Abstract

Energetic electrons, with energy from many tens to several hundred keV can be generated in laser produced plasmas by such laser plasma instabilities as the 2ωp instability, which occurs at the quarter critical density. It is important to know not only how these are produced, but also how they are transported and deposit their energy in the interior and whether they preheat the fuel. We introduce the velocity dependent Krook approach to this problem, and compare it to other approaches that have appeared in the literature as regards accuracy and economy of incorporating in a fluid simulation. This velocity dependent Krook technique is reasonably accurate and reasonably simple and economical to incorporate into a fluid simulation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alouanibibi, F. & Matte, J.P. (2007). Nonlocal electron heat transport and electron ion energy transfer in the presence of strong collisional heating. Laser Part. Beams 22, 103.Google Scholar
Alouanibibi, F., Matte, J.P. & Kieffer, J.C. (2004). Fokker Planck simulations of hot electron transport in solid density plasmas. Laser Part. Beams 22, 97.Google Scholar
Bernardinello, A., Batani, D., Maselle, V., Hall, T.A., Ellwi, S., Koenig, M., Bernuzzi, A., Krishnan, J., Pisani, F., Djaoui, A., Norrey, P., Neely, D., Rose, S., Key, M.H. & Fews, P. (1999). Fast electron propagation and energy deposition in laser shock compressed plasma. Laser & Part. Beams 17, 519.CrossRefGoogle Scholar
Brantov, A.V., Bychenkov, V.Yu., Tikhonchuk, V.T. & Rozmus, W. (1998). Nonlocal electron transport in laser heated plasmas. Phys. Plasmas 5, 2742.CrossRefGoogle Scholar
Brunner, S. & Valeo, E. (2002). Simulations of electron transport in laser hot spots. Phys. Plasmas 9, 923.CrossRefGoogle Scholar
Colombant, D. & Manheimer, W. (2008). The development of a Krook model for nonlocal transport in laser produced plasmas II: Application of the theory and comparison with other models. Phys. Plasmas 15, 083104.CrossRefGoogle Scholar
Colombant, D. & Manheimer, W. (2009). Krook model for nonthermal electron energy transport III: Spherical configuration. Phys. Plasmas 16, 0627051.CrossRefGoogle Scholar
Colombant, D. & Manheimer, W. (2010a). Numerical fluid solutions for nonlocal electron transport in hot plasmas: Equivalent diffusion versus nonlocal source. J. Comp. Phys. 229, 4369.CrossRefGoogle Scholar
Colombant, D. & Manheimer, W. (2010b). Internal tests and improvements of the Krook model for nonlocal electron energy transport in laser produced plasmas. Phys Plasmas 17, 112706.CrossRefGoogle Scholar
Epperlein, E.M. (1994). Fokker-Planck modeling of electron transport in laser produced plasmas. Laser Part. Beams 12, 257.CrossRefGoogle Scholar
Goncharov, V., Gotchev, O., Vianello, E., Boehly, T., Knauer, J., McKenty, P., Radha, P., Regan, S., Sangster, T., Skupsky, S., Smalyuk, W., Betti, R., Mc Croyy, R., Meyerhoffer, D., & Cherfils-Clorouin, Nd C. (2006). Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution. Phys. Plasmas 13, 012702.CrossRefGoogle Scholar
Goncharov, V., Sangster, T., Radha, P., Betti, R., Boehly, T., Collins, B., Craxton, S., Delettrez, J., Epstein, R., Glebov, V., Hu, S., Igumenshchev, I., Knauer, J., Loucks, S., Marozas, J., Marshall, F., McCrory, R., McKenty, P., Meyerhoffer, D., Regan, S., Seka, W., Skupsky, S., Smalyuk, V., Sources, J., Stoeckl, C., Shvarts, D., Frenje, J., Petrasso, R., Li, C., Seguin, F., Manheimer, W. & Colombant, D. (2008). Performance of direct-drive cryogenic targets on OMEGA. Phys. Plasmas 15, 056310.CrossRefGoogle Scholar
Harte, J.A., Alley, W.E., Bailey, D.S., Eddleman, J.L. & Zimmerman, G.B. (1998). Lasnex, a 2-D physics code for modeling ICF. LLNL report UCRL-LR-105821-96-4.Google Scholar
Honda, M., Nishiguchi, A., Takabe, H., Azechi, H. & Mima, K. (1996). Kinetic effects on thermal transport in ignition target design. Phys. Plasmas 3, 3420.CrossRefGoogle Scholar
Honrubia, J.J., Antonicci, A. & Moreno, D. (2004). Hybrid simulations of fast electron transport in conducting media. Laser Part. Beams 22, 129.CrossRefGoogle Scholar
Hou, C.T., Wu, S.Z., Cal, H.B., Chen, M., Lao, L.H., Wang, X.G. & Chew, L.Y. (2010). Hot electron transport and heating in dense plasma core by hollow guiding. Laser Part. Beams 28, 563.Google Scholar
Kershaw, D.S. (1979). Computer simulation of superthermal transport for laser fusion. UCRL preprint, 83494.Google Scholar
Keskinen, M.J. & Schmitt, A. (2007). Nonlocal electron heat flow in high Z laser plasmas with radiation transport. Laser Part. Beams 25, 333.CrossRefGoogle Scholar
Kruer, W.L. (1988). The Physics of Laser Fusion Interactions. Reading: Addison-Wesley Publishing.Google Scholar
Lindl, J.P. (1998). Inertial Confinement Fusion, the Quest for Ignition and Energy Gain Using Indirect Drive. Washington, DC: AIP Press.Google Scholar
Manheimer, W., Colombant, D. & Goncharov, V. (2008). The development of a Krook model for nonlocal transport in laser produced plasmas. I: Basic theory. Phys. Plasmas 15, 083103.CrossRefGoogle Scholar
Manheimer, W., Colombant, D. & Schmitt, A. (2012). Calculations of nonlocal electron energy transport in laser produced plasmas in one and two dimensions using the velocity dependent Krook model .Phys. Plasmas 19, 056317.CrossRefGoogle Scholar
Myatt, J.F., Zhang, J., Delettrez, J.A., Maximov, A.V., Short, R.W., Seka, W., Edgell, D.H., Dubois, D.F., Russell, D.A. & Vu, H.X. (2012). The dynamics of hot electron heating in direct drive implosion experiments caused by the two plasmon decay instability. Phys. Plasmas 19, 022707.CrossRefGoogle Scholar
Nishigushi, A., Mima, K., Azechi, H., Miyanaga, N. & Nakai, S. (1992). Kinetic effects of electron thermal conduction on implosion hydrodynamics. Phys. Fluids B 4, 417422.CrossRefGoogle Scholar
Rosen, M.D., Price, R.H., Campbell, E.M., Phillion, D.W., Estabrook, K.G., Lasinski, B.F., Auerbach, J.M., Obenschain, S.P., McLean, E.A., Whitlock, R.R. & Ripin, B.H. (1987). Analysis of laser plasma coupling and hydrodynamic phenomena in long pulse, long scale length plasmas. Phys. Rev. A 26, 247.Google Scholar
Schurtz, G., Nicolai, P. & Busquet, M. (2000). A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes. Phys. Plasmas 7, 4238.CrossRefGoogle Scholar
Sunahara, A., Delettrez, J.A., Stoeckl, C., Short, R.W. & Skupsky, S. (2003). Time-dependent electron thermal flux inhibition in direct drive laser implosions. Phys. Rev Lett. 91, 095003.CrossRefGoogle ScholarPubMed
Yaakobi, B., Gotchev, O.V., Betti, R. & Stoecki, C. (2009). Study of fast electron transport in laser illuminated spherical targets. Phys. Plasmas 16, 102703.CrossRefGoogle Scholar
Yan, R., Ren, C., Li, A.J., Maximov, V., Mori, W.B., Sheng, Z.M. & Tung, F.S. (2012). Generating energetic electrons through staged acceleration in the two plasmon decay instability in inertial confinement fusion. Phys. Rev. Lett. 108, 175002.CrossRefGoogle ScholarPubMed
Zimmerman, G. (1973). Numerical simulation of the high density approach to laser fusion. UCRL preprint 74811.Google Scholar
Zimmerman, G.B. & Kruer, W.L. (1975). Numerical simulation of laser initiated fusion, comments on plasma physics and controlled fusion. Plasma Phys. 2, 51.Google Scholar