Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T03:00:01.015Z Has data issue: false hasContentIssue false

Time-of-flight spectra for mapping of charge density of ions produced by laser

Published online by Cambridge University Press:  29 October 2013

J. Krása*
Affiliation:
Institute of Physics, ASCR, Prague, Czech Republic
P. Parys
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
L. Velardi
Affiliation:
LEAS, Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy INFN Sezione di Lecce, Lecce, Italy
A. Velyhan
Affiliation:
Institute of Physics, ASCR, Prague, Czech Republic
L. Ryć
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
D. Delle Side
Affiliation:
LEAS, Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy INFN Sezione di Lecce, Lecce, Italy
V. Nassisi
Affiliation:
LEAS, Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy INFN Sezione di Lecce, Lecce, Italy
*
Address correspondence and reprint requests to: J. Krása, Institute of Physics, ASCR, v.v.i.Na Slovance 2, 182 21 Praha 8, Czech Republic. E-mail: [email protected]

Abstract

A space-resolved charge density of ions is derived from a time-resolved current of ions emitted from laser-produced plasma and expanded into the vacuum along collision-free and field-free paths. This derivation is based on a similarity relationship for ion currents with “frozen” charges observed at different distances from the target. This relationship makes it possible to determine a map of ion charge density at selected times after the laser plasma interaction from signals of time-of-flight detectors positioned at a certain distance from the target around a target-surface normal. In this work, we present maps of the charge density of ions emitted from Cu and polyethylene plasmas. The mapping demonstrates that bursts of ions are emitted at various ejection angles ϕn with respect to the target-surface normal. There are two basic directions ϕ1 and ϕ2, one belonging to the fastest ions, i.e., protons and carbon ions, and the other one to the slowest ions being a part of each plasma plume.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dubenkov, V., Sharkov, B., Golubev, A., Shumshurov, A., Shamaev, O., Roudskoy, I., Streltsov, A., Satov, Y., Makarov, K., Smakovsky, Y., Hoffmann, D., Laux, W., Müller, R.W., Spädtke, P., Stöckl, C., Wolf, B. & Jacoby, J. (1996). Acceleration of Ta10+ ions produced by laser ion source in RFQ MAXILAC, Laser Part. Beams 14, 385392.CrossRefGoogle Scholar
Haseroth, H. & Hora, H. (1996). Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources, Laser Part. Beams 14, 393438.Google Scholar
Kelly, R. & Dreyfus, R.W. (1988). On the effect of Knudsen-layer formation on studies of vaporization, sputtering, and desorption. Surf. Sci. 198, 263276.CrossRefGoogle Scholar
Krása, J., Láska, L., Rohlena, K., Pfeifer, M., Skála, J., Králiková, B., Straka, P., Woryna, E. & Wolowski, J. (1999). The effect of laser-produced plasma expansion on the ion population. Appl. Phys. Lett. 75, 25392541.CrossRefGoogle Scholar
Krása, J., Velyhan, A., Jungwirth, K., Krouský, E., Láska, L., Rohlena, K., Pfeifer, M. & Ullschmied, J. (2009). Repetitive outbursts of fast carbon and fluorine ions from sub-nanosecond laser-produced plasma. Laser Part. Beams 27, 171178.CrossRefGoogle Scholar
Krása, J., Lorusso, A., Nassisi, V., Velardi, L. & Velyhan, A. (2011). Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation. Laser Part. Beams 29, 113119.CrossRefGoogle Scholar
Krása, J. (2013). Gaussian energy distribution of fast ions emitted by laser-produced plasmas. Appl. Surf. Sci. 272, 4549.CrossRefGoogle Scholar
Lorusso, A., Krása, J., Rohlena, K., Nassisi, V., Belloni, F. & Doria, D. (2005). Charge losses in expanding plasma created by an XeCl laser. Appl. Phys. Lett. 86, 081501.CrossRefGoogle Scholar
Miotello, A. & Kelly, R. (1999). On the origin of the different velocity peaks of particles sputtered from surfaces by laser pulses or charged-particle beams. Appl. Surf. Sci. 138139, 44–51.Google Scholar
Roudskoy, I.V. (1996). General features of highly charged ion generation in laser-produced plasmas. Laser Part. Beams 14, 369384.CrossRefGoogle Scholar
Thum, A., Rupp, A. & Rohr, K. (1994). Two-component structure in the angular emission of a laser-produced Ta plasma. J. Phys. D: Appl. Phys. 27, 17911794.CrossRefGoogle Scholar
Thum-Jäger, A. & Rohr, K. (1999). Angular emission distributions of neutrals and ions in laser ablated particle beams. J. Phys. D: Appl. Phys. 32, 28272831.CrossRefGoogle Scholar