Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T19:39:25.667Z Has data issue: false hasContentIssue false

Time-dependent collisional radiative model of ionizing and recombining plasmas

Published online by Cambridge University Press:  09 March 2009

H. Minoo
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Bâtiment 212, Université Paris XICentre d'Orsay, 91405-Orsay Cedex, France
M. Cukier
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Bâtiment 212, Université Paris XICentre d'Orsay, 91405-Orsay Cedex, France
J. Haidar
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Bâtiment 212, Université Paris XICentre d'Orsay, 91405-Orsay Cedex, France

Abstract

A time-dependent collisional radiative model, based on a five-charge state at any spacetime point in the plasma, is elaborated in order to follow the basic atomic physics processes in a plasma undergoing ionization and recombination. This model can either be used independently or be included in a magnetohydrodynamics code of a transient plasma. In the latter case, the efficiency of the model makes it particularly useful in saving computing time of hydrodynamic codes developed in connection with ion-driven fusion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, D. R., Kingston, A. E. & McWhirter, K. W. P. 1962 Proc. R. Soc. London 267, 297.Google Scholar
Bates, D. R. & Kingston, A. E. 1963 Planet. Space Sci. 11, 1.CrossRefGoogle Scholar
Bates, D. R. & Kingston, A. E. 1964 Proc. R. Soc. London 279, 1032.Google Scholar
Colombant, D. & Tonon, G. F. 1973 J. Appl. Phys. 44, 3524.CrossRefGoogle Scholar
Davis, J. & Whitney, K. G. 1976 J. Appl. Phys. 47, 1426.CrossRefGoogle Scholar
Duston, D. & Davis, J. 1980 Phys. Rev. A 21, 1664.CrossRefGoogle Scholar
Eliezer, S., Krumbein, A. D. & Salzmann, D. 1978 J. Phys. D 11, 1693.CrossRefGoogle Scholar
Fujimoto, T. 1979 J. Phys. Soc. Jpn. 47, 273.CrossRefGoogle Scholar
Fujimoto, T. & Kato, T. 1982 Phys. Rev. Lett. 48, 1022.CrossRefGoogle Scholar
Fujimoto, T. & Kato, T. 1984 Phys. Rev. A 30, 379.CrossRefGoogle Scholar
Hill, K. W. et al. 1979 Phys. Rev. A 19, 1770.CrossRefGoogle Scholar
Landshoff, R. K. & Perez, J. D. 1976 Phys. Rev. A 13, 1619.CrossRefGoogle Scholar
Lotz, W. 1967a Z. Phys. 206, 205.CrossRefGoogle Scholar
Lotz, W. 1967b J. Opt. Soc. Am. 57, 873.CrossRefGoogle Scholar
Lotz, W. 1968a J. Opt. Soc. Am. 58, 915.CrossRefGoogle Scholar
Lotz, W. 1968b Z. Phys. 216, 241.CrossRefGoogle Scholar
Lotz, W. 1969 Z. Phys. 220, 466.CrossRefGoogle Scholar
McWhirter, R. W. P. 1965 Plasma Diagnostic Techniques, Huddlestone, R. B. & Leonard, S. L., eds. (Academic, New York), p. 201.Google Scholar
McWhirter, R. W. P. & Hearn, A. G. 1963 Proc Phys. Soc. London 82, 641.CrossRefGoogle Scholar
Magill, J. 1977 J. Phys. D 10, 2257.CrossRefGoogle Scholar
Magill, J. 1978 Comput. Phys. Commun. 14, 129.CrossRefGoogle Scholar
Masai, K. 1984 Astrophys. Space Sci. 98, 367.CrossRefGoogle Scholar
Mikhailov, Yu. A. et al. 1977 Opt. Spectrosc. (USSR) 42, 469.Google Scholar
Nakano, N. & Kuroda, H. 1983 Phys. Rev. A 27, 2168.CrossRefGoogle Scholar
Perez, J. D. & Payne, G. L. 1980 Phys. Rev. A 21, 968.CrossRefGoogle Scholar
Salzmann, D. 1979a Phys. Rev. A 20, 1704.CrossRefGoogle Scholar
Salzmann, D. 1979b Phys. Rev. A 20, 1713.CrossRefGoogle Scholar
Salzmann, D. & Krumbein, A. 1978 J. Appl. Phys. 49, 3229.CrossRefGoogle Scholar
Scharmer, G. B. & Carlson, M. 1985 J. Comput. Phys. 59, 56.CrossRefGoogle Scholar
Summers, H. P. 1974 Mon. Not. R. Astron. Soc. 169, 663.CrossRefGoogle Scholar