Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T05:06:22.113Z Has data issue: false hasContentIssue false

Three-dimensional simulations of the Rayleigh–Taylor instability during the deceleration phase

Published online by Cambridge University Press:  09 March 2009

R.P.J. Town
Affiliation:
Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BZ, United Kingdom
B.J. Jones
Affiliation:
Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BZ, United Kingdom
J.D. Findlay
Affiliation:
Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BZ, United Kingdom
A.R. Bell
Affiliation:
Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BZ, United Kingdom

Abstract

The growth of the Rayleigh-Taylor instability in three dimensions is ex amined during the deceleration phase of an inertial confinement fusion implosion. A detailed discussion of the three-dimensional hydrocode, PLATO, is presented. A review of previous calculations is given, concentrating on theshape of the R-T instability in three dimensions. Results of the growth rate during the linear phase, the saturation amplitude, and the nonlinear evolution are presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, G.R. et al. 1980 Phys. Fluids 23, 1485.CrossRefGoogle Scholar
Birkhoff, G. & Carter, D. 1957 J. Math. Mech. 6, 769.Google Scholar
Book, D.L. & Bodner, S.E. 1987 Phys. Fluids 30, 367.CrossRefGoogle Scholar
Courant, R. et al. 1928 Math. Ann. 100, 32.CrossRefGoogle Scholar
Dahlburg, J.P. & Gardner, J.H. 1990. Phys.Rev. A 2, 5695.CrossRefGoogle Scholar
Dahlburg, J.P. et al. 1993 Phys. Fluids B5, 571.CrossRefGoogle Scholar
Desselberger, M. et al. 1990 Phys. Rev. Lett. 65, 2997.CrossRefGoogle Scholar
Garabedian, P.R. 1957 Proc. Roy. Soc. A241, 423.Google Scholar
Gardner, J.H. et al. 1991 Phys. Fluids B3, 1070.CrossRefGoogle Scholar
Gentry, R.A. et al. 1966 J. Comput. Phys. 1, 1.CrossRefGoogle Scholar
Glendinning, S.G. et al. 1992 Phys. Rev. Lett. 69, 1201.CrossRefGoogle Scholar
Glimm, J. & Li, X.L. 1988 Phys. Fluids 31, 2077.CrossRefGoogle Scholar
Hattori, F. et al. 1986 Phys. Fluids 29, 1719.CrossRefGoogle Scholar
Hecht, J. et al. 07, 1992 Anomalous Absorption Conference. Lake Placid, NewYork.Google Scholar
Henshaw, M.J. et al. 1987 Plas. Phys.Cont. Fus. 29, 405.CrossRefGoogle Scholar
Howard, J.E. 1977 Appl. Optics 16, 2764.CrossRefGoogle Scholar
Jacobs, J.W. & Catton, I. 1988 J. Fluid Mech. 187, 329.CrossRefGoogle Scholar
Layzer, D. 1955 Astrophys. J. 122, 1.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1987 Fluid Mechanics, 2nd ed. (Pergamon Press, New York), p. 36.Google Scholar
Manheimer, W. et al. 1984 Phys. Fluids 27, 2164.CrossRefGoogle Scholar
Mikaelian, K.O.1989Phys. Rev. A 40, 4801.Google Scholar
Munro, D.H. 1988 Phys. Rev A 38, 1433.CrossRefGoogle Scholar
Ott, E. 1972 Phys. Rev. Lett. 29, 1429.CrossRefGoogle Scholar
Plesset, M.S. 1954 J. Appl. Phys. 25, 96.CrossRefGoogle Scholar
Rayleigh, Lord 1900 Scientific Papers (Dover, New York).Google Scholar
Read, K.I. 1984 Physica D 12, 45.CrossRefGoogle Scholar
Richtmyer, R.D. 1960 Comm. Pure Appl. Math 13, 297.CrossRefGoogle Scholar
Roberts, P.D. et al. 1980 J. Phys. D 13, 1957.Google Scholar
Sakagami, H. & Nishihara, K. 1990a Phys. Fluids B2, 2715.CrossRefGoogle Scholar
Sakagami, H. & Nishihara, K. 1990b Phys. Rev. Lett. 65, 432.CrossRefGoogle Scholar
Tabak, M. et al. 1990 Phys. Fluids 2, 1007.CrossRefGoogle Scholar
Takabe, H. et al. 1985 Phys. Fluids 28, 3676.CrossRefGoogle Scholar
Taylor, G.I. 1950 Proc. Roy. Soc. London A 201, 192.Google Scholar
Town, R.P.J. & Bell, A.R. 1991 Phys. Rev. Lett. 67, 1863.CrossRefGoogle Scholar
Tryggvason, G. & Unverdi, S.O. 1990 Phys. Fluids A2, 656.CrossRefGoogle Scholar
Van Leer, B. 1977 J. Comput. Phys. 23, 276.CrossRefGoogle Scholar
Verdon, C.P. et al. 1982 Phys. Fluids 25, 1653.CrossRefGoogle Scholar
Youngs, D.L. 1982 Numerical Methods for Fluid Dynamics (Academic Press, New York).Google Scholar
Youngs, D.L. 1984 Physica D 12, 32.CrossRefGoogle Scholar
Youngs, D.L. 1989 Physica D 37, 279.CrossRefGoogle Scholar