Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T08:04:05.714Z Has data issue: false hasContentIssue false

Third harmonic generation of a nonlinear laser Eigen mode of a self sustained plasma channel

Published online by Cambridge University Press:  01 February 2013

K.K. Magesh Kumar*
Affiliation:
Physics Department, Indian Institute of Technology Delhi, New Delhi, India
V.K. Tripathi
Affiliation:
Physics Department, Indian Institute of Technology Delhi, New Delhi, India
*
Address correspondence and reprint requests to: K.K. Magesh Kumar, Physics Department, Indian Institute of Technology Delhi, New Delhi-110016, India. E-mail: [email protected]

Abstract

The third harmonic generation of a self organized nonlinear laser Eigen mode of a two-dimensional plasma channel with complete electron evacuation from the inner region is investigated. The nonlinearities arise through the ponderomotive force and relativistic mass variations, while the ions are taken to be immobile. The second harmonic ponderomotive force produces electron density oscillations that beat with the oscillatory velocity due to the laser Eigen mode to create a nonlinear current, driving the third harmonic. As a0 increases up to the threshold value amin, at which complete electron evacuation begins in the inner region, the third harmonic amplitude rises rapidly. Above the threshold, as a0 increases, the width of the inner region where there is no third harmonic current, increases and third harmonic amplitude rises less rapidly. The conversion efficiency is found to be in reasonable agreement with the experimental results.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borisov, A.B., Borovskiy, A.V., Shiryaev, O.B., Korobkin, V.V., Prokhorov, A.M., Solem, J.C., Luk, T.S., Boyer, K. & Rhodes, C.K. (1992). Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A 45, 58305845.CrossRefGoogle ScholarPubMed
Bulanov, S.V., Pegoraro, F. & Pukhov, A.M. (1995). Two-dimensional regimes of self-focusing, wake field generation, and induced focusing of a short intense laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 710713.CrossRefGoogle Scholar
Burnett, N.H. & Enright, G.D. (1990). Population inversion in the recombination of optically-ionized plasmas. IEEE J. Quant. Electron. 26, 17971808.CrossRefGoogle Scholar
Durfee Iii, C.G. & Milchberg, H.M. (1993). Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 24092412.CrossRefGoogle Scholar
Ehrlich, Y., Cohen, C., Zigler, A., Krall, J., Sprangle, P. & Esarey, E. (1996). Guiding of High Intensity Laser Pulses in Straight and Curved Plasma Channel Experiments. Phys. Rev. Lett. 77, 41864189.CrossRefGoogle ScholarPubMed
Ganeev, R.A., Boltaev, G.S., Tugushev, R.I., Usmanov, T., Baba, M. & Kuroda, H. (2010). Third harmonic generation in plasma plumes using picosecond and femtosecond laser pulses. J. Opt. 12, 17.CrossRefGoogle Scholar
Garg, V. & Tripathi, V.K. (2010). Resonant third harmonic generation of an infrared laser in a semiconductor wave guide. Laser Part. Beams 28, 327332.CrossRefGoogle Scholar
Geddes, C.G.R., Toth, C.S., Tilborg, J.V., Esarey, E., Schroeder, C.B., Cary, J. & Lee-Mans, W.P. (2005). Guiding of Relativistic Laser Pulses by Preformed Plasma Channels. Phys. Rev. Lett. 95, 145002145006.CrossRefGoogle ScholarPubMed
Ghorbanalilu, M. (2012). Second and third harmonics generation in the interaction of strongly magnetized dense plasma with an intense laser beam. Laser Part. Beams 30, 291298.CrossRefGoogle Scholar
Gupta, M.K., Sharma, R.P. & Mahmoud, S.T. (2007). Generation of plasma wave and third harmonic generation at ultra relativistic laser power. Laser Part. Beams 25, 211218.CrossRefGoogle Scholar
Jackel, S., Burris, R., Grun, J., Ting, A., Manka, C., Evans, K. & Kosakowskii, J. (1995). Channeling of terawatt laser pulses by use of hollow waveguides. Opt. Lett. 20, 10861088.CrossRefGoogle ScholarPubMed
Kumarappan, V., Kim, K.Y. & Milchberg, H.M. (2005). Guiding of intense laser pulses in plasma waveguides produced from efficient, femtosecond end-pumped heating of clustered gases. Phys. Rev. Lett. 94, 205004205008.CrossRefGoogle ScholarPubMed
Kuo, C.C., Pai, C.H., Lin, M.W., Lee, K.H., Lin, J.Y., Wang, J. & Chen, S.Y. (2007). Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide. Phys. Rev. Lett. 98, 033901033903.CrossRefGoogle ScholarPubMed
Lin, M.W., Chen, Y.M., Pai, C.H., Kuo, C.C.Lee, K.H., Wang, J., Chen, S.Y. & Lin, J.Y. (2006). Programmable fabrication of spatial structures in a gas jet by laser machining with a spatial light modulator. Phys. Plasmas 13, 110701110704.CrossRefGoogle Scholar
Liu, X., Umstadter, D., Esarey, E. & Ting, A. (1993). IEEE Trans. Plasma Sci. 21, 90.Google Scholar
Macchi, A., Bigongiari, A., Ceccherini, F., Cornolti, F., Liseikina, T.V., Borghesi, M., Kar, S. & Romagnani, L. (2007). Ion dynamics and coherent structure formation following laser pulse self-channeling. Plasma Phys. Contr. Fusion 49, 7178.CrossRefGoogle Scholar
Malka, V., Faure, J., Marques, J.R., Amiranoff, F., Courtois, C., Najmudin, Z., Krushenick, K., Salvati, M.R. & Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A.Joshi, C., Malka, V., Darrow, C.B., Danson, C., Neely, D. & Walsh, F.N. (1995). Electron acceleration from the breaking of relativistic plasma waves. Nat. (London) 377, 606608.Google Scholar
Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C.,Malka, V., Darrow, C.B., Danson, C., Neely, D. & Walsh, F.N. (1995). Electron acceleration from the breaking of relativistic plasma waves. Nat. 377, 606608.CrossRefGoogle Scholar
Mora, P. & Antonsen, T.M. Jr. (1996). Electron cavitation and acceleration in the wake of an ultraintense, self-focused laser pulse. Phys. Rev. E 53, 20682071.CrossRefGoogle ScholarPubMed
Nikitin, S.P., Antonsen, T.M., Clark, T.R., Li, Y. & Milchberg, H.M. (1997). Guiding of intense femtosecond pulses in preformed plasma channels. Opt. Lett. 22, 17871789.CrossRefGoogle ScholarPubMed
Nitikan, S.P. & Sharma, A.K. (2004). Resonant second-harmonic generation of a short pulse laser in a plasma channel. J. Phys. D: Appl. Phys. 37, 23952398.CrossRefGoogle Scholar
Pathak, V.B. & Tripathi, V.K. (2006). Nonlinear electromagnetic plasma eigenmodes and their stability to stimulated Raman scattering. Phys. Plasmas 13, 082105082108.CrossRefGoogle Scholar
Sarkisov, G.S., Bychenkov, V.Yu., Novikov, V.N. & Tikhonchuk, V.T., Maksimchuk, A., Chen, S.Y., Wagner, R., Mourou, G. & Umstadter, G. (1996). Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a He jet. Phys. Rev. E 59, 70427054.CrossRefGoogle Scholar
Singh, A & Singh, N. (2011). Relativistic guidance of an intense laser beam through an axially non-uniform plasma channel. Laser Part. Beams 29, 291298.CrossRefGoogle Scholar
Sprangle, P., Esarey, E., Krall, J. & Joyce, G. (1992). Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69, 22002203.CrossRefGoogle ScholarPubMed
Sprangle, P., Esarey, E., Ting, A. & Joyce, G. (1988). Laser wake_eld acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 21462148.CrossRefGoogle Scholar
Sun, G., Edward, O., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526532.CrossRefGoogle Scholar
Suntsov, S., Abdollahpour, D., Papazoglou, D.G. & Tzortzakis, S. (2010). Filamentation-induced third-harmonic generation in air via plasma-enhanced third-order susceptibility. Phys. Rev. A 81, 033817033820.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Wood worth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Ting, A., Moore, C.I., Krushelnick, K.Manka, C., Esarey, E.Sprangle, P., Hubbard, R., Burris, H.R., Fischer, R. & Baine, M. (1997). Plasma wakefield generation and electron acceleration in a self-modulated laser wakefield accelerator experiment. Phys. Plasmas 4, 18891899.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2009 a). Effect of laser self defocusing on third harmonic generation in a tunnel ionizing gas. Phys. Plasmas 16, 013101013105.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2009 b). Effect of self focusing on the prolongation of laser produced plasma channel. Laser Part. Beams 27, 3339.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2011). Nonlinear electromagnetic Eigen modes of a self created magnetized plasma channel and its stimulated Raman scattering. Laser Part. Beams 29, 471477.CrossRefGoogle Scholar
Yang, H., Zhang, J., Zhang, J., Zhao, L.Z., Li, Y.J., Teng, H., Li, Y.T., Wang, Z.H., Chen, Z.L., Wei, Z.Y., Ma, J.X., Yu, W. & Sheng, Z.M. (2003). Third-order harmonic generation by self-guided femtosecond pulses in air. Phys. Rev. E 67, 015401015403.CrossRefGoogle ScholarPubMed