Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T08:44:14.175Z Has data issue: false hasContentIssue false

Thermodynamic properties of nonideal plasmas with multiple ionization and Coulomb and hard-core interactions

Published online by Cambridge University Press:  09 March 2009

Torsten Kahlbaum
Affiliation:
Zentralinstitut für Elektronenphysik, Hausvogteiplatz 5-7, Berlin, D-1086, Federal Republic of Germany
Andreas Förster
Affiliation:
Fachbereich Physik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin, D-1040, Federal Republic of Germany

Abstract

We present a theoretical approach to the thermodynamic properties of nonideal plasmas consisting of neutral atoms, multiply charged ions, and free electrons. Starting with the free energy, we describe the ionization equilibrium of this system by a coupled set of mass action laws (Saha equations). Our model of interaction takes into account Coulomb forces between all charged particles and hard-core forces between all heavy particles and the electrons. The influence of multiple ionization and different interaction parts on plasma composition, mean charge, and equation of state is discussed for xenon. Finally, we show the potential occurrence of the plasma phase transition.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bespalov, I. M. & Polishchuk, A.Ya., 1989 Pis'ma Zh. Tekh. Fiz. 15, 4 (in Russian).Google Scholar
Ceperley, D. M. & Alder, B. J. 1980 Phys. Rev. Lett. 45, 566.Google Scholar
DeWitt, H. E. 1976 Phys. Rev. A 14, 1290.Google Scholar
Drawin, H.-W. & Felenbok, P. 1965 Data for Plasmas in Local Thermodynamic Equilibrium (Gauthier-Villars, Paris).Google Scholar
Ebeling, W. 1989 Inside the Sun, Berthomieu, G. & Cribier, M., eds. (Kluwer, Dordrecht) p. 43.Google Scholar
Ebeling, W. 1990 Contrib. Plasma Phys. 30, (4).CrossRefGoogle Scholar
Ebeling, W. & Richert, W. 1985 Phys. Status Solidi B 128, 467.Google Scholar
Ebeling, W. et al. 1988 Physica A 150, 159.CrossRefGoogle Scholar
Ecker, G. & Kröll, W. 1963 Phys. Fluids 6, 62.Google Scholar
Förster, A., Ebeling, W. & Richert, W. 1988 High Pressure Geosciences and Material Synthesis, Vollstädt, H., ed. (Akademie, Berlin), p. 84.CrossRefGoogle Scholar
Förster, A. & Kahlbaum, T. 1990 Proceedings of the IInd International School on Quantum Statistics QUAST II, Flessenow/GDR, Blaschke, D. ed. (Universität, Rostock) (in press).Google Scholar
Hess, H. & Kahlbaum, T. 1989 High Pressure Science and Technology, Novikov, N. V., ed. (Naukova Dumka, Kiev), Vol. 3, p. 238.Google Scholar
Hubbard, W. B. & DeWitt, H. E. 1985 Astrophys. J. 290, 388.Google Scholar
Kahlbaum, T. & Hess, H. 1988 High Pressure Geosciences and Material Synthesis, Vollstädt, H., ed. (Akademie, Berlin), p. 90.CrossRefGoogle Scholar
Kalitkin, N. N. 1978 Numerical Methods (Nauka, Moscow) (in Russian).Google Scholar
Kraeft, W.-D. et al. 1986, 1988 Quantum Statistics of Charged Particle Systems (Akademie, Berlin; Plenum, New York; Mir, Moscow, Russian translation).Google Scholar
Mansoori, G. A. et al. 1971 J. Chem. Phys. 54, 1523.CrossRefGoogle Scholar
Moore, Ch. E. 1958 Atomic Energy Levels, NBS Circular No. 467 (NBS, Washington, D.C.), Vol. III, p. 113.Google Scholar
Perrot, F. 1979 Phys. Rev. A 20, 586.Google Scholar
Polishchuk, A. Ya. 1986 Preprint IVTAN No. 1–197 (USSR Academy of Sciences, Moscow) (in Russian).Google Scholar
Richert, W. & Ebeling, W. 1984 Phys. Status Solidi B 121, 633.CrossRefGoogle Scholar
Rosenfeld, Y. 1980 Phys. Rev. Lett. 44, 146.Google Scholar
Saumon, D. & Chabrier, G. 1989 Phys. Rev. Lett. 62, 2397.Google Scholar
Valuyev, A. A., Medvedev, I. G. & Norman, G. E. 1970 Zh. Eksp. Teor. Fiz. 59, 2228 (in Russian). English Translation: Sov. Phys. JETP 32, 1205 (1971).Google Scholar