Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T01:10:15.187Z Has data issue: false hasContentIssue false

Terahertz radiation by self-focused amplitude-modulated Gaussian laser beam in magnetized ripple density plasma

Published online by Cambridge University Press:  21 October 2015

Ram Kishor Singh*
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi-110016, India
R. P. Sharma
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi-110016, India
*
Address correspondence and reprint requests to: Ram Kishor Singh, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi-110016, India. E-mail: [email protected]

Abstract

This paper presents a theoretical model for efficient terahertz (THz) radiation by self-focused amplitude-modulated laser beam in preformed ripple density plasma. The density of plasma is modified due to ponderomotive nonlinearity which arises because of the nonuniform spatial profile of the laser beam in magnetized plasma and leads to the self-focusing of the laser beam. The rate of self-focusing depends on the intensity of the amplitude-modulated beam as well as on the externally applied magnetic field strength. The electron also experiences time-dependent ponderomotive force by the laser beam at modulated frequency. A nonlinear current at THz frequency arises on account of the coupling between the ripple density plasma and nonlinear oscillatory velocity of the electrons. The yield of the generated THz radiation enhances with enhancement in self-focusing of the laser beam and applied magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609.CrossRefGoogle Scholar
Cho, M.-H., Kim, Y.-K., Suk, H., Ersfeld, B., Jaroszynski, D.A. & Hur, M.S. (2015). Strong terahertz emission from electromagnetic diffusion near cutoff in plasma. New J. Phys. 17, 043045.CrossRefGoogle Scholar
D'amico, C., Houard, A., Akturk, S., Liu, Y., Bloas, J.L., Franco, M., Prade, B., Couairon, A., Tikhonchuk, V.T. & Mysyrowicz, A. (2008). Forward THz radiation emission by femtosecond filamentation in gases: theory and experiment. New J. Phys. 10, 013015.CrossRefGoogle Scholar
D'amico, C., Houard, A., Franco, M., Prade, B. & Mysyrowicz, A. (2007). Coherent and incoherent radial THz radiation emission from femtosecond filaments in air. Opt. Express 15, 15274.CrossRefGoogle ScholarPubMed
Dorranian, D., Ghoranneviss, M., Starodubtsev, M., Yugami, N. & Nishida, Y. (2005). Microwave emission from TW-100 fs laser irradiation of gas jet. Laser Part. Beams 23, 583.CrossRefGoogle Scholar
Federici, J. & Moeller, L. (2010). Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107, 111101.CrossRefGoogle Scholar
Federici, J.F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F. & Zimdars, D. (2005). THz imaging and sensing for security applications-explosives, weapons and drugs. Semicond. Sci. Technol. 20, S266.CrossRefGoogle Scholar
Ferguson, B. & Zhang, X.-C. (2002). Materials for terahertz science and technology. Nat. Mater. 1, 26.CrossRefGoogle ScholarPubMed
Ginzburg, V.L. (1970). The Propagation of Electromagnetic Waves in Plasmas. New York: Pergamon.Google Scholar
Glyavin, M.Yu., Luchinin, A.G. & Golubiatnikov, G.YU. (2008). Generation of 1.5-kW, 1-THz coherent radiation from a Gyrotron with a pulsed magnetic field. Phys. Rev. Lett. 100, 015101.CrossRefGoogle ScholarPubMed
Hashimshony, D., Zigler, A. & Papadopoulos, K. (1999). Generation of tunable far-infrared radiation by the interaction of a superluminous ionizing front with an electrically biased photoconductor. Appl. Phys. Lett. 74, 1669.CrossRefGoogle Scholar
Hu, G.-Y., Shen, B., Lei, A.-L., Li, R.-X. & Xu, Z.-Z. (2010). Transition-Cherenkov radiation of terahertz generated by super-luminous ionization front in femtosecond laser filament. Laser Part. Beams 28, 399.CrossRefGoogle Scholar
Jepsen, P.U., Jacobsen, R.H. & Keiding, S.R. (1996). Generation and detection of terahertz pulses from biased semiconductor antennas. J. Opt. Soc. Am. B 13, 2424.CrossRefGoogle Scholar
Kim, K.Y., Glownia, J.H., Taylor, A.J. & Rodriguez, G. (2007). Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt. Express 15, 4577.CrossRefGoogle ScholarPubMed
Kim, K.Y., Taylor, A.J., Glownia, J.H. & Rodriguez, G. (2008). Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nat. Photonics 2, 605.CrossRefGoogle Scholar
Kostin, V.A. & Vvedenskii, N.V. (2010). Ionization-induced conversion of ultrashort Bessel beam to terahertz pulse. Opt. Lett. 35, 247.CrossRefGoogle ScholarPubMed
Kumar, S., Singh, R.K., Singh, M. & Sharma, R.P. (2015). THz radiation by amplitude-modulated self-focused Gaussian laser beam in ripple density plasma. Laser Part. Beams 33, 257.CrossRefGoogle Scholar
Lee, Y.S., Meade, T., Perlin, V., Winful, H., Norris, T.B. & Galvanauskas, A. (2000). Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate. Appl. Phys. Lett. 76, 2505.CrossRefGoogle Scholar
Sharma, A.K. (1978). Transverse self-focusing and filamentation of a laser beam in a magnetoplasma. J. Appl. Phys. 49, 2396.CrossRefGoogle Scholar
Sharma, R.P. & Singh, R.K. (2014). Terahertz generation by two cross focused laser beams in collisional plasmas. Phys. Plasmas 21, 073101.CrossRefGoogle Scholar
Shen, Y.C., Upadhya, P.C., Beere, H.E., Linfield, E.H., Davies, A.G., Gregory, I.S., Baker, C., Tribe, W.R. & Evans, M.J. (2004). Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers. Appl. Phys. Lett. 85, 164.CrossRefGoogle Scholar
Siegel, P.H. (2004). Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52, 2438.CrossRefGoogle Scholar
Singh, M., Singh, R.K. & Sharma, R.P. (2013). THz generation by cosh-Gaussian lasers in a rippled density plasma. Euro. Phys. Lett. 104, 35002.CrossRefGoogle Scholar
Singh, R.K. & Sharma, R.P. (2014). Terahertz generation by two cross focused Gaussian laser beams in magnetized plasma. Phys. Plasmas 21, 113109.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974 a). Self-focusing of Laser Beams in Dielectrics, Plasmas and Semiconductor. Delhi: Tata-McGraw-Hill.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169.CrossRefGoogle Scholar
Sodha, M.S., Salimullah, M. & Sharma, R.P. (1980). Generation of an ion-acoustic pulse by two electromagnetic pulses at difference frequencies in a collisionless plasma. Phys. Rev. A 21, 1708.CrossRefGoogle Scholar
Sodha, M.S., Sharma, R.P. & Tripathi, V.K. (1974 b). Self distortion of an amplitude modulated electromagnetic beam in a plasma: Relaxation effects. Appl. Phys. 5, 153.CrossRefGoogle Scholar
Sodha, M.S., Singh, D.P. & Sharma, R.P. (1979). Transient setting of ponderomotive nonlinearity, self-focusing, and plasma-wave excitation. J. Appl. Phys. 50, 2678.CrossRefGoogle Scholar
Tonouchi, M. (2007). Cutting-edge terahertz technology. Nat. Photonics 1, 97.CrossRefGoogle Scholar
Tripathi, D., Bhasin, L., Uma, R. & Tripathi, V.K. (2010). Terahertz generation by an amplitude-modulated Gaussian laser beam in a rippled density plasma column. Phys. Scr. 82, 035504.CrossRefGoogle Scholar
Xie, X., Dai, J. & Zhang, X.C. (2006). Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96, 075005.CrossRefGoogle ScholarPubMed
Yugami, N., Higashiguchi, T., Gao, H., Sakai, S., Takahashi, K., Ito, H., Nishida, Y. & Katsouleas, T. (2002). Experimental observation of radiation from Cherenkov wakes in a magnetized plasma. Phys. Rev. Lett. 89, 065003.CrossRefGoogle Scholar