Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T03:17:30.787Z Has data issue: false hasContentIssue false

Temporal evolution of the inversion condition for the X-ray Balmer-α transition in ions of short-laser-pulse produced recombining plasmas

Published online by Cambridge University Press:  09 March 2009

R.W. John
Affiliation:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Postfach 1107, D-12474 Berlin, Germany
W. Brunner
Affiliation:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Postfach 1107, D-12474 Berlin, Germany

Abstract

When generating population density inversion and X-ray gain in the ions of a recombining plasma produced by short laser pulses it is essential to consider the energy level occupation as explicitly time-dependent. In the framework of a four-level model with time-dependent pumping terms, the inversion condition for the Balmer-α transition in H-like ions is derived in closed form, dependent, apart from specified initial conditions, on the atomic number Z, with the free-electron density Ne, the electron temperature Te, the Lyman-α escape probability E21, and the time t. In particular, at a short time after the initial time chosen near the time of the onset of recombination the Balmer-α inversion requires that Ne must be larger than some critical value depending on Te and Z.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I.A., eds. 1965 Handbook of Mathematical Functions (Dover Publications, New York), p. 228.Google Scholar
Bethe, H.A. & Salpeter, E.E. 1957 Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin-Göttingen-Heidelberg), pp. 250, 256.CrossRefGoogle Scholar
Brunner, W. & John, R.W. 1991 Laser Part. Beams 9, 817;Google Scholar
Corrigendum (1993) 11, 277.CrossRefGoogle Scholar
Brunner, W. & John, R.W. 1993 In Book of Abstracts, 22nd European Conference on Laser Interaction with Matter, Paris 1993, 05 1014 [organized by the LULI laboratory (CNRS), Palaiseau, and the CEA, Villeneuve Saint Georges], P. 16/2.Google Scholar
Brunner, W. & Schlegel, Th. 1986 J. Phys. (Paris) 47, C699.Google Scholar
Drawin, H.W. & Emard, F. 1977 Physica 85C, 333.Google Scholar
Duston, D. & Duderstadt, J.J. 1978 J. Appl. Phys. 49, 4388.CrossRefGoogle Scholar
Elton, R.C. 1983 Comments At. Mol. Phys. 13, 59.Google Scholar
Elton, R.C. 1990 X-Ray Lasers (Academic Press, Boston), pp. 54, 146, 154.Google Scholar
Fill, E.E., ed. 1992 X-Ray Lasers 1992, Institute of Physics Conference Series 125 (IOP Publishing, Bristol and Philadelphia).Google Scholar
Griem, H.R. 1964 Plasma Spectroscopy (McGraw-Hill, New York), pp. 187, 362.Google Scholar
Holstein, T. 1947 Phys. Rev. 72, 1212.Google Scholar
Jones, W.W. & Ali, A.W. 1975 Appl. Phys. Lett. 26, 450.CrossRefGoogle Scholar
Kamke, E. 1959 Differentialgleichungen, Lösungsmethoden und Lösungen, Bd. I(Akadem. Verlagsgesellschaft Geest & Portig K.-G., Leipzig), p. 49.Google Scholar
Keane, C. J. et al. 1990 In Femtosecond to Nanosecond High-Intensity Lasers and Applications, Campbell, E.M., ed. (Proc. SPIE 1229, Bellingham), p. 190.Google Scholar
Pert, G.J. 1976 J. Phys. B: At. Mol. Phys. 9, 3301.Google Scholar
Pert, G.J. & Ramsden, S.A. 1974 Optics Comm. 11, 270.CrossRefGoogle Scholar
Seaton, M.J. 1959 Monthly Not. R. Astron. Soc. London 119, 81.CrossRefGoogle Scholar
Seaton, M.J. 1964 Planetary and Space Sci. 12, 55.Google Scholar
Skinner, C.H. 1991 Phys. Fluids B 3, 2420.CrossRefGoogle Scholar
Tallents, G.J. 1985 Laser Part. Beams 3, 475.CrossRefGoogle Scholar
Whitney, K.G. & Davis, J. 1974 J. Appl. Phys. 45, 5294.CrossRefGoogle Scholar
Yariv, A. 1975 Quantum Electronics, 2nd ed. (John Wiley, New York), p. 162.Google Scholar