Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T00:50:51.821Z Has data issue: false hasContentIssue false

Study of uniformity of elongated plasma channels formed in gas puff targets using extreme ultraviolet and soft X-ray radiation

Published online by Cambridge University Press:  17 April 2015

P.W. Wachulak*
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
A. Bartnik
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
R. Jarocki
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
T. Fok
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
Ł. Węgrzyński
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
J. Kostecki
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
M. Szczurek
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
H. Fiedorowicz
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
*
Address correspondence and reprint requests to: P.W. Wachulak, Institute of Optoelectronics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland. E-mail: [email protected]

Abstract

The results of formation of elongated krypton/helium plasma channels are presented. Two laser pulses were used: one to produce plasma channels and the second one for conversion to soft X rays. The soft X-ray radiation was in turn used for backlighting the channels and their visualization. The study of their formation and uniformity was performed using a combination of soft X-ray shadowgraphy and pinhole camera imaging. The plasma channels, with various lengths and various densities, were visualized and the results of their characterization are presented. Using moderate laser pulse energy quite uniform channels, up to 9 mm in length, were demonstrated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bartnik, A., Fiedorowicz, H., Kostecki, J., Morozov, A., Suckewer, S. & Szczurek, M. (1997). Formation of elongated laser sparks in gas puff targets by nanosecond laser pulses. Proc. SPIE 3156, 296.CrossRefGoogle Scholar
Borisov, A.B., McCorkindale, J.C., Poopalasingam, S., Longworth, J.W. & Rhodes, Ch.K. (2013). Demonstration of Kr(L) amplification at λ = 7.5 Å from Kr clusters in self-trapped plasma channels. J. Phys. B, At. Mol. Opt. Phys. 46, 155601.CrossRefGoogle Scholar
Butler, A., Gonsalves, A.J., McKenna, C.M., Spence, D.J., Hooker, S.M., Sebban, S., Mocek, T., Bettaibi, I. & Cros, B. (2003). Demonstration of a collisionally excited optical-field-ionization XUV laser driven in a plasma waveguide. Phys. Rev. Lett. 91, 205001.CrossRefGoogle Scholar
Butler, A., Spence, D.J. & Hooker, S.M. (2002). Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide. Phys. Rev. Lett. 89, 185003.CrossRefGoogle ScholarPubMed
Clark, D.S. & Fisch, N.J. (2003). Simulations of Raman laser amplification in ionizing plasmas. Phys. Plasmas 10, 4837.CrossRefGoogle Scholar
Dunaevsky, A., Goltsov, A., Greenberg, J., Valeo, E. & Fisch, N.J. (2006). Formation of laser plasma channels in a stationary gas. Phys. Plasmas 13, 043106.CrossRefGoogle Scholar
Durfee, C.G. III, Lynch, J. & Milchberg, H.M. (1995). Development of a plasma waveguide for high-intensity laser pulses. Phys. Rev. E 51, 2368.CrossRefGoogle ScholarPubMed
Ehrlich, Y., Cohen, C., Zigler, A., Krall, J., Sprangle, P. & Esarey, E. (1996). Guiding of high intensity laser pulses in straight and curved plasma channel experiments. Phys. Rev. Lett. 77, 4186.CrossRefGoogle ScholarPubMed
Fiedorowicz, H., Bartnik, A., Jarocki, R., Kostecki, J., Krzywiński, J., Mikołajczyk, J., Rakowski, R., Szczurek, A. & Szczurek, M. (2005). Compact laser plasma EUV source based on a gas puff target for metrology applications. J. Alloy. Compd. 401, 99.CrossRefGoogle Scholar
Gaudiosi, D.M., Reagan, B., Popmintchev, T., Grisham, M., Berrill, M., Cohen, O., Walker, B.C., Murnane, M.M., Kapteyn, H.C. & Rocca, J.J. (2006). High-order harmonic generation from ions in a capillary discharge. Phys. Rev. Lett. 96, 203001.CrossRefGoogle Scholar
Greb, A., Boettner, H., Winter, J. & Schulz-von der Gathen, V. (2011). Excitation dynamics of a kHz driven micro-structured plasma channel device operated in argon. Plasma Sources Sci. Technol. 20, 055010.CrossRefGoogle Scholar
Krushelnick, K., Ting, A., Moore, C.I., Burris, H.R., Esarey, E., Sprangle, P. & Baine, M. (1997). Plasma channel formation and guiding during high intensity short pulse laser plasma experiments. Phys. Rev. Lett. 78, 4047.CrossRefGoogle Scholar
Leemans, W.P., Nagler, B., Gonsalves, A.J., Toth, Cs., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B. & Hooker, S.M. (2006). GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696.CrossRefGoogle Scholar
Malkin, V.M. & Fisch, N.J. (2001). Backward Raman amplification of ionizing laser pulses. Phys. Plasmas 8, 4698.CrossRefGoogle Scholar
Milchberg, H.M., Clark, T.R., Durfee, C.G. III, Antonsen, T.M. & Mora, P. (1996). Development and applications of a plasma waveguide for intense laser pulses. Phys. Plasmas 3, 2149.CrossRefGoogle Scholar
Mohamed, W.T., Chen, G., Kim, J., Tao, G.X., Ahn, J. & Kim, D.E. (2011). Controlling the length of plasma waveguide up to 5 mm, produced by femtosecond laser pulses in atomic clustered gas. Opt. Express 19, 15919.CrossRefGoogle ScholarPubMed
Morozov, A., Ping, Y., Suckewer, S., Bartnik, A. & Fiedorowicz, H. (1997). Soft X-ray radiation from plasma and microcapillary waveguides. Proc. SPIE 3156, 214.CrossRefGoogle Scholar
Ping, Y., Geltner, I., Fisch, N.J., Shvets, G. & Suckewer, S. (2000). Demonstration of ultrashort laser pulse amplification in plasmas by a counterpropagating pumping beam. Phys. Rev. E 62, R4532.CrossRefGoogle ScholarPubMed
Sakai, S., Higashiguchi, T., Bobrova, N., Sasorov, P., Miyazawa, J., Yugami, N., Sentoku, Y. & Kodama, R. (2011). Properties of a capillary discharge-produced argon plasma waveguide for shorter wavelength source application. Rev. Sci. Instrum. 82, 103509.CrossRefGoogle ScholarPubMed
Shvets, G., Fisch, N.J., Pukhov, A. & Meyer-ter-Vehn, J. (1998). Superradiant amplification of an ultrashort laser pulse in a plasma by a counterpropagating pump. Phys. Rev. Lett. 81, 4879.CrossRefGoogle Scholar
Suzuki, M., Daido, H., Choi, I.W., Yu, W., Nagai, K., Norimatsu, T., Mima, K. & Fiedorowicz, H. (2003). Time and space-resolved measurement of a gas-puff laser-plasma x-ray source. Phys. Plasmas 10, 227.CrossRefGoogle Scholar
Ting, A., Moore, C.I., Krushelnick, K., Manka, C., Esarey, E., Sprangle, P., Hubbard, R., Burris, H.R., Fischer, R. & Baine, M. (1997). Plasma wakefield generation and electron acceleration in a self-modulated laser wakefield accelerator experiment. Phys. Plasmas 4, 1889.CrossRefGoogle Scholar
Wachulak, P.W., Bartnik, A., Fiedorowicz, H., Jarocki, R., Kostecki, J. & Szczurek, M. (2012 a). Soft X-ray characterization of an elongated gas-puff target dedicated for laser-matter interaction experiments and high harmonic generation. Nucl. Instrum. Methods Phys. B 276, 3843.CrossRefGoogle Scholar
Wachulak, P.W., Bartnik, A., Jarocki, R. & Fiedorowicz, H. (2012 b). Characterization of multi-jet gas puff targets for high-order harmonic generation using EUV shadowgraphy. Nucl. Instrum. Methods Phys. B 285, 102106.CrossRefGoogle Scholar
Wachulak, P.W., Bartnik, A., Jarocki, R., Fok, T., Węgrzyński, Ł., Kostecki, J., Szczurek, M., Jabczyński, J. & Fiedorowicz, H. (2014). Generation and characterization of plasma channels in gas puff targets using soft X-ray radiography technique. Phys. Plasmas 21, 103106.CrossRefGoogle Scholar