Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T04:39:44.341Z Has data issue: false hasContentIssue false

Studies on possible alternative schemes based on two-laser driver for inertial fusion energy applications

Published online by Cambridge University Press:  22 April 2009

C. Strangio*
Affiliation:
Associazione EURATOM-ENEA sulla Fusione ENEA-Frascati, Italy
A. Caruso
Affiliation:
Università Kore-Enna, Enna, Italy
M. Aglione
Affiliation:
Associazione EURATOM-ENEA sulla Fusione ENEA-Frascati, Italy
*
Address correspondence and reprint requests to: C. Strangio, Associazione EURATOM-ENEA sulla Fusione ENEA-Frascati, Italy. E-mail: [email protected]

Abstract

Unconventional, promising approaches to inertial fusion energy (IFE) proposed and studied in the framework of IFE keep-in-touch activity at Frascati EURATOM-ENEA Association will be reconsidered for the present more advanced technological context associated to a planned large installations scenario. Then the possibility to generate laser-produced fast heavy-ion sources (e.g., Bi ions, tens GeV) will be explored taking as reference results obtained in the FIGEX experiment scaled toward thermonuclear regimes. A possible dimensioning of such sources will be also given as well as the associated laser requirements.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Caruso, A. & Strangio, C. (2001). Studies on non conventional high-gain target design for ICF. Laser Part. Beams 19, 295308.CrossRefGoogle Scholar
Caruso, A. & Strangio, C. (1999). The injected entropy approach for the ignition of high gain targets by heavy ions beams or incoherent X-ray pulses. Proc. 1999 Inertial Fusion Sciences and Applications, pp. 8893. Bordeaux, France.Google Scholar
Caruso, A. & Strangio, C. (2000). Ignition of high gain targets by entropy injection. Laser Part. Beams 18, 3547.Google Scholar
Caruso, A. & Pais, V.A. (1996). The ignition of dense DT fuel by injected triggers. Nucl. Fusion 36, 745–57.Google Scholar
Caruso, A. & Pais, V.A. (1998). Effects of the injected trigger pulse focusing and timing on the ignition and gain of dense static, or imploding DT fuel. Phys. Lett. A 243, 319324.CrossRefGoogle Scholar
Chatain, D., Perin, J.P., Bonnay, P., Bouleau, E., Chichoux, M., Communal, D., Manzagol, J., Viargues, F., Brisset, D., Lamaison, V. & Paquignon, G. (2008). Cryogenic systems for inertial fusion energy. Laser Part. Beams 26, 517523.CrossRefGoogle Scholar
Eliezer, S., Murakaml, M. & Val, J.M.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.Google Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762081.CrossRefGoogle Scholar
Hora, H. (2007 a). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Hora, H. (2007 b). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 327.Google Scholar
Imasaki, K. & Li, D. (2007). An approach to hydrogen production by inertial fusion energy. Laser Part. Beams 25, 99105.CrossRefGoogle Scholar
Strangio, C. & Caruso, A. (2005). Comparison of fast ions production modes by short laser pulses. Laser Part. Beams 23, 3341.Google Scholar
Strangio, C. & Caruso, A. (2008). ICF applications of fast ions generated by focusing short laser pulses on ultra-thin causally isolated targets. J. Phys.: Conf. Ser. 112 doi:10.1088/1742-6596/112/4/042043.Google Scholar
Strangio, C., Caruso, A., Neely, D., Andreoli, P.L., Anzalone, R., Clarke, R., Cristofari, G., Del Prete, E., Di Giorgio, G., Murphy, C., Ricci, C., Stevens, R. & Tolley, M. (2007). Production of multi-MeV per nucleon ions in the controlled amount of matter mode (CAM) by using causally isolated targets. Laser Part. Beams 25, 17.CrossRefGoogle Scholar
Yu, W., Yu, M.Y., Xu, H., Tian, Y.W., Chen, J. & Wong, A.Y. (2007). Intense local plasma heating by stopping of ultrashort ultraintense laser pulse in dense plasma. Laser Part. Beams 25, 631638.CrossRefGoogle Scholar
Zvorykin, V.D., Didenko, N.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritskii, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Seleznev, L.V., Sinitsyn, D.V., Tenyakov, S.Y., Ustinovskii, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams 25, 435451.Google Scholar