Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-17T23:42:51.008Z Has data issue: false hasContentIssue false

Stopping of ions in a plasma irradiated by an intense laser field

Published online by Cambridge University Press:  04 October 2011

H.B. Nersisyan*
Affiliation:
Institute of Radiophysics and Electronics, Ashtarak, Armenia Centre of Strong Fields Physics, Yerevan State University, Yerevan, Armenia
C. Deutsch
Affiliation:
LPGP (UMR-CNRS 8578), Université Paris XI, Orsay, France
*
Address correspondence and reprint requests to: H.B. Nersisyan, Institute of Radiophysics and Electronics, 0203 Ashtarak, Ameria. E-mail: [email protected]

Abstract

The inelastic interaction between heavy ions and an electron plasma in the presence of an intense radiation field (RF) is investigated. The stopping power of the test ion averaged with a period of the RF has been calculated assuming that ω0 > ωp, where ω0 is the frequency of the RF and ωp is the plasma frequency. In order to highlight the effect of the radiation field we present a comparison of our analytical and numerical results obtained for nonzero RF with those for vanishing RF. It has been shown that the RF may strongly reduce the mean energy loss for slow ions while increasing it at high–velocities. Moreover, it has been shown, that acceleration of the projectile ion due to the RF is expected at high–velocities and in the high–intensity limit of the RF, when the quiver velocity of the plasma electrons exceeds the ion velocity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akopyan, E.A., Nersisyan, H.B. & Matevosyan, H.H. (1997). Energy losses of a charged particle in a plasma in an external field allowing for the field action on plasma and particle motion. Radiophys. Quant. Electrons. 40, 823826.CrossRefGoogle Scholar
Aliev, Yu.M., Gorbunov, L.M. & Ramazashvili, R.R. (1971). Polarization losses of a fast heavy particle in a plasma located in a strong high frequency field. Zh. Eksp. Teor. Fiz. 61, 14771480.Google Scholar
Arista, N.R. & Brandt, W. (1981). Energy loss and straggling of charged particles in plasmas of all degeneracies. Phys. Rev. A 23, 18981905.CrossRefGoogle Scholar
Arista, N.R., Galvão, R.O.M. & Miranda, L.C.M. (1989). Laser-field effects on the interaction of charged particles with a degenerate electron gas. Phys. Rev. A 40, 38083816.CrossRefGoogle ScholarPubMed
Arista, N.R. & Piriz, A.R. (1987). Energy loss of fast particles in confined atomic systems at very high temperatures. Phys. Rev. A 35, 34503453.CrossRefGoogle ScholarPubMed
Baldwin, K.G.H. & Boreham, B.W. (1981). Investigation of tunneling processes in laser–induced ionization of argon. J. Appl. Phys. 52, 26272633.CrossRefGoogle Scholar
Basbas, G. & Ritchie, R.H. (1982). Vicinage effects in ion–cluster collisions with condensed matter and with single atoms. Phys. Rev. A 25, 19431962.CrossRefGoogle Scholar
Couillaud, C., Deicas, R., Nardin, Ph., Beuve, M.A., Guihaume, J.M., Renaud, M., Cukier, M., Deutsch, C. & Maynard, G. (1994). Ionization and stopping of heavy ions in dense laser– ablated plasmas. Phys. Rev. E 49, 15451562.CrossRefGoogle ScholarPubMed
D'Avanzo, J., Lontano, M. & Bortignon, P.F. (1993). Fast–ion interaction in dense plasmas with two–ion correlation effects. Phys. Rev. E 47, 35743584.CrossRefGoogle ScholarPubMed
Deutsch, C. (1986). Inertial confinement fusion driven by intense ion beams. Ann. Phys. Paris 11, 1111.CrossRefGoogle Scholar
Deutsch, C. (1995). Correlated stopping of Coulomb clusters in a dense jellium target. Phys. Rev. E 51, 619631.CrossRefGoogle Scholar
Echenique, P.M. (1987). Interaction of slow ions with bulk and surfaces. Nucl. Instrum. Meths. B 27, 256265.CrossRefGoogle Scholar
Frank, A., Blažević, A., Grande, P.L., Harres, K., Hessling, Th., Hoffmann, D.H.H., Knobloch-Maas, R., Kuznetsov, P.G., Nürnberg, F., Pelka, A., Schaumann, G., Schiwietz, G., Schökel, A., Schollmeier, M., Schumacher, D., Schütrumpf, J., Vatulin, V.V., Vinokurov, O.A. & Roth, M. (2010). Energy loss of argon in a laser-generated carbon plasma. Phys. Rev. E 81, 02640116.CrossRefGoogle Scholar
Fried, D.B. & Conte, S.D. (1961). The Plasma Dispersion Function. New York: Academic.Google Scholar
Hoffmann, D.H.H., Tahir, N.A., Udrea, S., Rosmej, O., Meister, C.V., Varentsov, D., Roth, M., Schaumann, G., Frank, A., Blažević, A., Ling, J., Hug, A., Menzel, J., Hessling, Th., Harres, K., Günther, M., El-Moussati, S., Schumacher, D. & Imran, M. (2010). High energy density physics with heavy ion beams and related interaction phenomena. Contrib. Plasma Phys. 50, 715.CrossRefGoogle Scholar
Hu, Z.-H., Song, Y.-H., Mišković, Z.L. & Wang, Y.-N. (2011). Energy dissipation of ion beam in two-component plasma in the presence of laser irradiation. Laser Part. Beams 29, 299.CrossRefGoogle Scholar
Kim, S.H. & Pac, P.Y. (1979). Heating of a collisionless turbulent plasma by multiphoton absorption. Phys. Rev. A 19, 21392141.CrossRefGoogle Scholar
Kroll, N.M. & Watson, K.M. (1973). Charged-particle scattering in the presence of a strong electromagnetic wave. Phys. Rev. A 8, 804809.CrossRefGoogle Scholar
Lima, M.B.S., Lima, C.A.S. & Miranda, L.C.M. (1979). Screening effect on the plasma heating by inverse bremsstrahlung. Phys. Rev. A 19, 17961800.CrossRefGoogle Scholar
Lindhard, J. (1954). On the properties of a gas of charged particles. K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 28, 157.Google Scholar
Lindhard, J. & Winther, A. (1964). Stopping power of electron gas and equipartition rule. K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 34, 122.Google Scholar
Lompre, L.A., Mainfray, G., Manus, C., Repoux, S. & Thebault, J. (1976). Multiphoton ionization of rare gases at very high laser intensity (1015 W/cm2) by a 30-psec laser pulse at 1.06 μm. Phys. Rev. Lett. 36, 949952.CrossRefGoogle Scholar
Max, C.E. (1982). Laser–Plasma Interaction. Amsterdam: North-Holland.Google Scholar
Maynard, G. & Deutsch, C. (1982). Energy loss and straggling of ions with any velocity in dense plasmas at any temperature. Phys. Rev. A 26, 665668.CrossRefGoogle Scholar
Mehlhorn, T.A. (1981). A finite material temperature model for ion energy deposition in ion–driven inertial confinement fusion targets. J. Appl. Phys. 52, 65226532.CrossRefGoogle Scholar
Miranda, D.F., Guimarães, A.F., Fonseca, A.L.A., Agrello, D.A. & Nunes, O.A.C. (2005). Screening breakdown in a plasma by two laser fields and strong DC magnetic field. Contrib. Plasma Phys. 45, 2231.CrossRefGoogle Scholar
Nersisyan, H.B. & Akopyan, E.A. (1999). Stopping and acceleration effect of protons in a plasma in the presence of an intense radiation field. Phys. Lett. A 258, 323328.CrossRefGoogle Scholar
Nersisyan, H.B. & Das, A.K. (2000). Dicluster stopping in a degenerate electron gas. Phys. Rev. E 62, 56365647.CrossRefGoogle Scholar
Nersisyan, H.B., Toepffer, C. & Zwicknagel, G. (2007). Interactions Between Charged Particles in a Magnetic Field: A Theoretical Approach to Ion Stopping in Magnetized Plasmas. Heidelberg: Springer.Google Scholar
Peter, Th. & Meyer-ter-Vehn, J. (1991). Energy loss of heavy ions in dense plasma. Linear and nonlinear Vlasov theory for the stopping power. Phys. Rev. A 43, 19982014.CrossRefGoogle ScholarPubMed
Ritchie, R.H., Tung, C.J., Anderson, V.E. & Ashley, J.C. (1975). Electron slowing–down spectra in solids. Radiat. Res. 64, 181204.CrossRefGoogle ScholarPubMed
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser–accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Seely, J.F. & Harris, E.G. (1973). Heating of a plasma by multiphoton inverse bremsstrahlung. Phys. Rev. A 7, 10641067.CrossRefGoogle Scholar
Silin, V.P. (1973). Parametric Effect of High–Intensity Radiation on Plasmas. Moscow: Nauka.Google Scholar
Stöckl, C., Frankenheim, O.B., Roth, M., Suß, W., Wetzler, H., Seelig, W., Kulish, M., Dornik, M., Laux, W., Spiller, P., Stetter, M., Stöwe, S., Jacoby, J. & Hoffmann, D.H.H. (1996). Interaction of heavy ion beams with dense plasmas. Laser Part. Beams 14, 561574.CrossRefGoogle Scholar
Tavdgiridze, T.L. & Tsintsadze, N.L. (1970). Energy losses by a charged particle in an isotropic plasma located in an external high frequency electric field. Zh. Eksp. Teor. Fiz. 58, 975978.Google Scholar
Tung, C.J. & Ritchie, R.H. (1977). Electron slowing–down spectra in aluminium metal. Phys. Rev. B 16, 43024313.CrossRefGoogle Scholar
Weingartshofer, A., Holmes, J.K., Caudle, G., Clarke, E.M. & Krüger, H. (1977). Direct observation of multiphoton processes in laser–induced free–free transitions. Phys. Rev. Lett. 39, 269270.CrossRefGoogle Scholar
Weingartshofer, A., Holmes, J.K., Sabbagh, J. & Chin, S.L. (1983). Electron scattering in intense laser fields. J. Phys. B 16, 18051817.CrossRefGoogle Scholar
Zwicknagel, G., Toepffer, C. & Reinhard, P.-G. (1999). Stopping of heavy ions in plasmas at strong coupling. Phys. Rep. 309, 117208.CrossRefGoogle Scholar