Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T02:33:11.687Z Has data issue: false hasContentIssue false

Stimulated Raman backscattering of filamented hollow Gaussian beams

Published online by Cambridge University Press:  10 June 2013

Ram Kishor Singh*
Affiliation:
Centre for Energy Studies, Delhi, India
R.P. Sharma
Affiliation:
Centre for Energy Studies, Delhi, India
*
Address correspondence and reprint requests to: Ram Kishor Singh, Centre for Energy Studies, IIT Delhi, India110016. E-mail: [email protected]

Abstract

This paper presents a model for excitation of electron plasma wave and resulting stimulated Raman scattering due to presence of a laser beam carrying null intensity in center (hollow Gaussian beam) in a collisionless plasma. We have studied the self-focusing of the hollow Gaussian beam and its effect on back stimulated Raman scattering process in the presence of ponderomotive nonlinearity. To understand the nature of propagation of the hollow Gaussian beam, electron plasma wave and back reflectivity, a paraxial-ray approximation has been invoked. It is predicted that self-focusing and back reflectivity reduces for higher order of hollow Gaussian beam.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609636.CrossRefGoogle Scholar
Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C. & Woerdman, J.P. (1992). Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A. 45, 81858189.CrossRefGoogle ScholarPubMed
Cai, Y., Lu, X. & Lin, Q. (2003). Hollow Gaussian beam and their propagation properties. Opt. Lett. 28, 10841086.CrossRefGoogle ScholarPubMed
Cai, Y. & Zhang, L. (2006). Propagation of various dark hollow beams in a turbulent atmosphere. Opt. Express 14, 13531367.CrossRefGoogle Scholar
Cai, Y. & Lin, Q. (2004). Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems. J. Opt. Soc. Am. A 21, 6.CrossRefGoogle ScholarPubMed
Fuchs, J., Labaune, C., Depierreux, S., Tikhonchuk, V.T. & Baldis, H.A. (2000). Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment. Phys. Plasmas 7, 46594668.CrossRefGoogle Scholar
Grow, D.T., Ishaaya, A.A., Vuong, L.T. & Gaeta, A.L. (2006). Collapse dynamics of supper-Gaussian beam. Opt. Soc. Am. 14, 5468.Google Scholar
Gupta, Ruchika., Sharma, Prerana., Rafat, M. & Sharma, R.P. (2011). Cross-focusing of two hollow Gaussian laser beam in plasma. Laser Part. Beams 29, 227230.CrossRefGoogle Scholar
Gill, T.S., Mahajan, R. & Kaur, R. (2010). Relativistic and ponderomotive effects on evolution of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 28, 521529.CrossRefGoogle Scholar
Herman, R.M. & Wiggins, T.A. (1991). Production and uses of diffractionless beams. J. Opt. Soc. Am. A 8, 932.CrossRefGoogle Scholar
Kaw, P.K., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasma. Phys. Fluids 16, 1522.CrossRefGoogle Scholar
Kruer, W.L. (1974). The Physics of Laser Plasma Interaction. New York: Addison-Wesley.Google Scholar
Kirkwood, R.K., Moody, J.D., Niemann, C., Williams, E.A., Langdon, A.B., Landen, O.L., Divol, L. & Suter, L.J. (2006). Observation of polarization dependent Raman scattering in a large scale plasma illuminated with multiple laser beam. Phys. Plasmas 13, 082703.CrossRefGoogle Scholar
Lee, H.S., Stewart, B.W., Choi, K. & Fenichel, H. (1994). Holographic nondiverging hollow beam. Phys. Rev. A 49, 4922.CrossRefGoogle ScholarPubMed
Michelberg, H.M., Durfee, C.G. III & Mcilarth, T.J. (1995). High-order frequency conversion in the plasma waveguide. Phys. Rev. Lett. 75, 24942497.Google Scholar
Mendonca, J.T., Thide, B. & Then, H. (2009). Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum. Phys. Rev. Lett. 102, 185005.CrossRefGoogle ScholarPubMed
Matsuoka, T., Lei, A., Yabuuchi, T., Adumi, K., Zheng, J., Kodamal, R., Sawai, K., Suzuki, K., Kitagawa, Y., Norimatsu, T., Nagai, K., Nagatomo, H., Izawa, Y., Mima, K., Sentoku, Y. & Tanaka, K.A. (2008). Focus optimization of relativistic self- focusing for anomalous laser penetration into overdense plasmas (super- penetration). Plasma Phys. Control. Fusion 50, 10501.CrossRefGoogle Scholar
Sodha, M.S., Misra, S.K. & Misra, S. (2009). Focusing of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 27, 5768.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. E 3, 169265.CrossRefGoogle Scholar
Sprangle, P. & Esarey, E. (1991). Stimulated backscattered harmonic generation from intense laser interactions with beams and plasmas. Phys. Rev. Lett. 67, 20212024.CrossRefGoogle ScholarPubMed
Sprangle, P., Esarey, E., Ting, A. & Joyce, G. (1988). Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 21462148.CrossRefGoogle Scholar
Song, Y., Milam, D. & Hill, W.T. (1999). Long, narrow all-light atom guide. Opt. Lett. 24, 1805.CrossRefGoogle ScholarPubMed
Tabak, M., Hammer, J., Glinisky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra powerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar
Umstadter, D., Chen, S.Y., Maksimchuk, A., Mourou, G. & Wagner, R. (1996). Nonlinear optics in relativistic plasmas and laser wakefield acceleration of electrons. Sci. 273, 472475.CrossRefGoogle Scholar
Umstadter, D., Kim, J.K. & Dodd, E. (1996). Laser injection of ultrashort electron pulses into wakefield plasma waves. Phys. Rev. Lett. 76, 2073.CrossRefGoogle ScholarPubMed
Umstadter, D. & Norris, T.B. (1997). Nonlinear optics with relativistic electrons. IEEE J. Quantum Electr. 33, 1877.CrossRefGoogle Scholar
Wang, X. & Littman, M.G. (1993). Laser cavity for generation of variable-radius rings of light. Opt. Lett. 18, 767.CrossRefGoogle ScholarPubMed