Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T12:50:41.244Z Has data issue: false hasContentIssue false

Spatial extension of the electromagnetic field from tightly focused ultra-short laser pulses

Published online by Cambridge University Press:  09 January 2014

L. Ionel
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, Măgurele, jud. Ilfov, Romania
D. Ursescu*
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, Măgurele, jud. Ilfov, Romania “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Măgurele, jud. Ilfov, Romania
*
Address correspondence and reprint requests to: D. Ursescu, National Institute for Lasers, Plasma and Radiation Physics, Atomistilor 409, Magurele RO-077125, Măgurele, jud. Ilfov, Romania. E-mail: [email protected]

Abstract

It is shown that in the focus of ultra-short pulses of duration t, the equivalent relation s = ct, where c is the speed of light and s the spatial extent of the pulse of the collimated pulse, does not hold. While the duration of one pulse is constant and independent of the measurement point, the spatial extension of the ultra-short pulse can be spatially shorter a factor more than 10 compared to the one obtained from the usual relation. The result is explained in correspondence with the extension of the Rayleigh range. Few femtosecond long gamma bursts can thus be generated in Thomson backscattering experiments performed in the lambda cube regime.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brabec, T. & Krausz, F. (2000). Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 2, 72, 545591.Google Scholar
Buck, A., Nicolai, M., Schmid, K., Sears, C.M.S., Sävert, A., Mikhailova, J.M., Krausz, F., Kaluza, M.C. & Veisz, L. (2011). Real-time observation of laser-driven electron acceleration. Nat. Phys. 7, 543548.Google Scholar
Chouffani, K., Harmon, F., Wells, D., Jones, J. & Lancaster, G. (2006). Laser-compton scattering as a tool for electron beam diagnostics. Laser Part. Beams 24, 411419.Google Scholar
Eliezer, S. (2002). The Interaction of High-Power Lasers with Plasmas (Navas, John, ed.). Bristol: IOP Publishing Ltd.Google Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasimonoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.Google Scholar
Gupta, D.N. & Suk, H. (2007). Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 3136.Google Scholar
Habs, D., Gross, M., Marginean, N., Negoita, F., Thirolf, P.G. & Zepf, M. (2010). The white book of ELI-nuclear physics, the scientific case of ELI nuclear physic pillar. http://www.eli-np.ro/documents/ELI-NP-WhiteBook.pdf.Google Scholar
Hartemann, F., Tremaine, A., Anderson, S., Barty, C., Betts, S., Booth, R., Brown, W., Crane, J., Cross, R., Gibson, D., Fittinghoff, D., Kuba, J., Le Sage, G., Slaughter, D., Wootton, A., Hartouni, E., Springer, P., Rosenzweig, J. & Kerman, A. (2004). Characterization of a bright, tunable, ultrafast Compton scattering X-ray source. Laser and Part. Beams 22, 221244.Google Scholar
Hays, G.R., Gaul, E.W., Martinez, M.D. & Ditmire, T. (2007). Broad-spectrum neodymium-doped laser glasses for high-energy chirped-pulse amplification. Appl. Opti. 46, 48134819.Google Scholar
Hora, H., Hoelss, M., Scheid, W., Wang, J.W., Ho, Y.K., Osman, F. & Castillo, R. (2000). Principle of high accuracy for the non-linear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities. Laser Part. Beams 18, 135144.Google Scholar
Hou, B., Nees, J., Mordovanakis, A., Wilcox, M., Mourou, G., Chen, L., Kieffer, J.C., Chamberlain, C.C. & Krol, A. (2006). Hard X-ray generation from solids driven by relativistic intensity in the lambda-cubed regime. Appl. Phys. B 83, 8185.Google Scholar
King, B., Piazza, A.D. & Keitel, C.H. (2010). A matter less double slit. Nat. Photon 4, 9294Google Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser Part. Beams 26, 397409.Google Scholar
Lee, K. & Cha, Y.H. (2003). Relativistic nonlinear Thomson scattering as attosecond X-ray source. Phys. Rev. E 67, 026502.CrossRefGoogle ScholarPubMed
Liu, L., Xia, C.-Q., Liu, J.-S., Wang, W.-T., Cai, Y., Wang, C., Li, R.-X. & Xu, Z.-Z. (2010). Generation of attosecond X-ray pulses via Thomson scattering of counter-propagating laser pulses. Laser Part. Beams 28, 2734.Google Scholar
Lundh, O., Lim, J., Rechatin, C., Ammoura, L., Ben-Ismaïl, A., Davoine, X., Gallot, G., Goddet, J.-P., Lefebvre, E., Malka, V. & Faure, J. (2011). Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator. Nat. Phys. 7, 219222.Google Scholar
Mao, Q., Kong, Q., Ho, Y., Che, H., Ban, H., Gu, Y. & Kawata, S. (2010). Radiative reaction effect on electron dynamics in an ultra intense laser field. Laser Part. Beams 28, 8390.Google Scholar
Marklund, M. & Shukla, P.K. (2006). Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 78, 591.CrossRefGoogle Scholar
Mourou, G.A., Korn, G., Sandner, W. & Collier, J.L. (2011). ELI – Extreme Light Infrastructure - Science and Technology with Ultra-Intense Lasers. Berlin: THOSS Media GmbH.Google Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309.Google Scholar
Naumova, N.M., Nees, J.A., Hou, B., Mourou, G.A. & Sokolov, I.V. (2004). Isolated attosecond pulses generated by relativistic effects in a wavelength-cubed focal volume. Opt. Lett. 29, 778780.Google Scholar
Naumova, N.M., Nees, J.A., Sokolov, I.V., Hou, B. & Mourou, G.A. (2004). Relativistic generation of isolated attosecond pulses in a lambda3 focal volume. Phys. Rev. Lett. 92, 063902Google Scholar
Piazza, D.A., Müller, C., Hatsagortsyan, K.Z. & Keitel, C.H. (2012). Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 11771228.Google Scholar
Popa, A. (2008). Accurate calculation of high harmonics generated by relativistic Thomson scattering. J. Phys. B: At. Mol. Opt. Phys. 41, 015601/1–7.Google Scholar
Popa, A. (2009). Modeling properties of hard X-rays generated by the interaction between relativistic electrons and very intense laser beams. J. Phys. B: At. Mol. Opt. Phys. 42, 025601/1–9.Google Scholar
Popa, A. (2011). Periodicity property of relativistic Thomson scattering with application to exact calculations of angular and spectral distributions of the scattered field. Phys.l Rev. A 84, 023824.Google Scholar
Popa, A. (2012). Polarization effects in collisions between very intense laser beams and relativistic electrons. Laser Part. Beams 30, 591603.Google Scholar
Priebe, G., Laundy, D., Macdonald, M.A., Diakun, G.P., Jamison, S.P., Jones, L.B., Holder, D.J., Smith, S.L., Phillips, P.J., Fell, B.D., Sheehy, B., Naumova, N., Sokolov, I.V., Ter-Avetisyan, S., Spohr, K., Krafft, G.A., Rosenzweig, J.B., Schramm, U., Gruner, F., Hirst, G.J., Collier, J., Chattopadhyay, S. & Seddon, E.A. (2008). Inverse Compton backscattering source driven by the multi-10 TW laser installed at Daresbury. Laser Part. Beams 26, 649660.Google Scholar
Pukhov, A. (2003). Strong field interaction of laser radiation. Rep. Prog. Phys. 66, 47101.Google Scholar
Quesnel, B. & Mora, P. (1998). Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum. Phys. Rev. E 58, 3719.Google Scholar
Salamin, Y.I. & Keitel, C.H. (2002). Electron acceleration by a tightly focused laser beam. Phys. Rev. Lett. 88, 095005.Google Scholar
Siegman, A.E. (1986). Lasers (Aidan, Kelly, ed.). South Orange: University Science Books.Google Scholar
Smorenburg, P., Kamp, L., Geloni, G. & Luiten, O. (2010). Coherently enhanced radiation reaction effects in laser-vacuum acceleration of electron bunches. Laser Part. Beams 28, 553562.Google Scholar
Wang, X., Zgadzaj, R., Fazel, N., Li, Z., Yi, S.A., Zhang, X., Henderson, W., Chang, Y.-Y., Korzekwa, R., Tsai, H.-E., Pai, C.-H., Quevedo, H., Dyer, G., Gaul, E., Martinez, M., Bernstein, A.C., Borger, T., Spinks, M., Donovan, M., Khudik, V., Shvets, G., Ditmire, T. & Downer, M.C. (2013). Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat Commun. 4, 1988.Google Scholar
Winters, D.F.A. & Stoehlker, T. (2009). Atomic physics at storage rings: Recent results from the ESR and future perspectives at fair. Internation. J. Mod. Phys. E 18, 359.Google Scholar
Yanovsky, V., Chvykov, V., Kalinchenko, G., Rousseau, P., Planchon, T., Matsuoka, T., Maksimchuk, A., Nees, J., Cheriaux, G., Mourou, G. & Krushelnick, K. (2008). Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Express 16, 21092114.Google Scholar
Zhang, P., Song, Y. & Zhang, Z. (2008). Attosecond pulse generation in Thomson scattering with phase-controlled few-cycle laser pulses. Phys. Rev. A 78, 013811.Google Scholar