Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T04:48:58.872Z Has data issue: false hasContentIssue false

Sound waves and shock waves in high-density deuterium

Published online by Cambridge University Press:  09 March 2009

Kazuko Inoue
Affiliation:
Faculty of Engineering, Kansai University, 3–3–35 Yamate-cho, Suita, Osaka 564, Japan

Abstract

The possibility of compressing the cryogenic hollow pellet of inertial confinement nuclear fusion with multiple adiabatic shock waves is discussed, on the basis of the estimation of the properties of a high-density deuterium plasma (1024−1027 cm−3, 10−1−104 eV), such as the velocity and the attenuation constant of the adiabatic sound wave, the width of the shock wave, and the surface tension.

It is found that in the course of compression the wavelength of the adiabatic sound wave and the width of the weak shock wave sometimes become comparable to or exceed the fuel shell width of the pellet, and that the surface tension is negative. These results show that it is rather difficult to compress stably the hollow pellet with successive weak shock waves.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Egelstaff, P. A. 1967 An Introduction to the Liquid State (Academic, London), Chap. 13.6.Google Scholar
Evans, R. 1974 J. Phys. C 7, 2808.Google Scholar
Galam, S. & Hansen, J. P. 1976 Phys. Rev. A 14, 816.CrossRefGoogle Scholar
Gupta, U. & Rajagopal, A. K. 1979 J. Phys. B 12, L703.Google Scholar
Hasegawa, M. 1988 J. Phys. F 18, 1449.CrossRefGoogle Scholar
Inoue, K. & Ariyasu, T. 1982 J. High Temp. Soc. (Suita, Jpn.) 8, 149 (in Japanese).Google Scholar
Inoue, K. & Ariyasu, T. 1987 Laser Part. Beams 5, 71.CrossRefGoogle Scholar
Inoue, K. et al. 1988 J. High Temp. Soc. (Suita, Jpn.) 14, 102 (in Japanese).Google Scholar
Jaffrin, M. Y. & Probstein, R. F. 1964 Phys. Fluids 7, 1658.CrossRefGoogle Scholar
Johnson, T. H. 1984 Proc. IEEE 72, 548.CrossRefGoogle Scholar
Lampe, M. 1968 Phys. Rev. 174, 276.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics (Oxford, New York), Chap. 9, §87.Google Scholar
Liberman, M. A. & Velikovich, A. L. 1985 Physics of Shock Waves in Gases and Plasmas (Springer-Verlag, Berlin), Chap. 2.Google Scholar
Nakai, S. et al. 1986 Rev. Laser Eng. 14, 1045 (in Japanese).CrossRefGoogle Scholar
Perrot, F. 1982 Phys. Rev. A 25, 489.CrossRefGoogle Scholar
Rice, S. A. & Kirkwood, J. G. 1959 J. Chem. Phys. 31, 901.CrossRefGoogle Scholar
Springer, J. F., Pokrant, M. A. & Stevens, F. A. JR., 1973 J. Chem. Phys. 58, 4863.CrossRefGoogle Scholar