No CrossRef data available.
Published online by Cambridge University Press: 28 January 2014
Laser interactions with spray targets (clouds of submicron droplets) are studied here via numerical simulations using two-dimensional particle-in-cell codes. Our simulations demonstrate an efficient absorption of laser pulse energy inside the spray. The energy absorption efficiency depends on the inter-droplet distance, size of the cloud of droplets, and laser pulse intensity, as well as on the pre-evaporation of droplets due to laser pulse pedestal. We investigate in detail proton acceleration from the spray. Energy spectra of protons in various acceleration directions vary significantly depending on the density profile of the plasma created from the droplets and on laser intensity. The spray target can be alternative of foil targets for high intensity high repetition ultrahigh contrast femtosecond lasers. However, at intensities >1021 W/cm2, the efficiency of laser absorption and ion acceleration from the droplets drops significantly in contrast to foils.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.