Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T12:23:33.421Z Has data issue: false hasContentIssue false

Simulation of the relativistic electron dynamics and acceleration in a linearly-chirped laser pulse

Published online by Cambridge University Press:  04 November 2014

Najeh M. Jisrawi
Affiliation:
Department of Applied Physics, University of Sharjah, Sharjah, United Arab Emirates
Benjamin J. Galow
Affiliation:
Gaisbergstraße 61, 69115 Heidelberg, Germany
Yousef I. Salamin*
Affiliation:
Department of Physics, American University of Sharjah, Sharjah, United Arab Emirates
*
Address correspondence and reprint requests to: Yousef I. Salamin, Department of Physics, American University of Sharjah, POB 26666, Sharjah, United Arab Emirates. E-mail: [email protected]

Abstract

Theoretical investigations are presented, and their results are discussed, of the laser acceleration of a single electron by a chirped pulse. Fields of the pulse are modeled by simple plane-wave oscillations and a cos2 envelope. The dynamics emerge from analytic and numerical solutions to the relativistic Lorentz-Newton equations of motion of the electron in the fields of the pulse. All simulations have been carried out by independent Mathematica and Python codes, with identical results. Configurations of acceleration from a position of rest as well as from injection, axially and sideways, at initial relativistic speeds are studied.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Esarey, E., Sprangle, P. & Krall, J. (1995). Laser acceleration of electrons in vacuum. Phys. Rev. E 52, 5443.CrossRefGoogle ScholarPubMed
Galow, B., Salamin, Y., Liseykina, T., Harman, Z. & Keitel, C. (2011). Dense monoenergetic proton beams from chirped laser-plasma interaction. Phys. Rev. E 107, 185002.Google ScholarPubMed
Gupta, D.N. & Suk, H. (2007). Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 31.CrossRefGoogle Scholar
Hartemann, F., Fochs, S., Sage, G.L., Luhmann, N., Woodworth, J., Perry, M., Chen, Y.J. & Kerman, A.K. (1995). Nonlinear ponderomotive scattering of relativistic electrons by an intense laser field at focus. Phys. Rev. E 51, 4833.CrossRefGoogle ScholarPubMed
Hu, S.X. & Starace, A.F. (2002). GeV electrons from ultraintense laser interaction with highly charged ions. Phys. Rev. Lett. 88, 245003.CrossRefGoogle ScholarPubMed
Kawata, S., Kong, Q., Miyazaki, S., Miyauchi, K., Sonobe, R., Ssksi, K., Nakajima, K., Masuda, S., Ho, Y.K., Miyanaga, N., Limpouch, J. & Andreev, A.A. (2005). Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser. Laser Part. Beams 23, 61.CrossRefGoogle Scholar
Lawson, J.D. (1979). Lasers and accelerators. IEEE Trans. Nucl. Sci. NS-26, 4217.CrossRefGoogle Scholar
Malka, V., Lefebvre, E. & Miquel, J.L. (1997). Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser. Phys. Rev. Lett. 78, 3314.CrossRefGoogle Scholar
Maltsev, A. & Ditmire, T. (2003). Above threshold ionization in tightly focused, strongly relativistic laser fields. Phys. Rev. Lett. 90, 053002.CrossRefGoogle ScholarPubMed
Pang, J., Ho, Y.K., Yuan, X.Q., Cao, N., Kong, Q., Wang, P.X., Shao, L., Esarey, E.H. & Sessler, A.M. (2002). Subluminous phase velocity of a focused laser beam and vacuum laser acceleration. Phys. Rev. E 66, 066501.CrossRefGoogle ScholarPubMed
Plettner, T., Byer, R.L., Colby, E. , Cowan, B., Sears, C.M.S., Spencer, J.E. & Siemann, R.H. (2005). Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum. Phys. Rev. Lett. 95, 134801.CrossRefGoogle Scholar
Salamin, Y.I. & Keitel, C.H. (2002). Electron acceleration by a tightly focused laser beam. Phys. Rev. Lett. 88, 095005.CrossRefGoogle ScholarPubMed
Salamin, Y.I. (2006). Electron acceleration from rest in vacuum by an axicon Gaussian laser beam. Phys. Rev. A 73, 043402.CrossRefGoogle Scholar
Salamin, Y.I. (2012). Net electron energy gain from interaction with a chirped plane-wave laser pulse. Phys. Lett. A 376, 2442.CrossRefGoogle Scholar
Salamin, Y.I., Faisal, F.H. M. & Keitel, C.H. (2000). Exact analysis of ultrahigh laser-induced acceleration of electrons by cyclotron autoresonance. Phys. Rev. A 62, 053809.CrossRefGoogle Scholar
Salamin, Y.I., Harman, Z. & Keitel, C.H. (2008). Direct high-power laser acceleration of ions for medical applications. Phys. Rev. Lett. 100, 155004.CrossRefGoogle ScholarPubMed
Scully, M.O. & Zubairy, M.S. (1991). Simple laser accelerator: Optics and particle dynamics. Phys. Rev. A 44, 2656.CrossRefGoogle ScholarPubMed
Shao, L., Cline, D., Ding, X., Ho, Y.K., Kong, Q., Xu, J.J., Pogorelsky, I., Yakimenko, V. & Kusche, K. (2013). Simulation prediction and experiment setup of vacuum laser acceleration at Brookhaven National Lab-Accelerator Test Facility. Nucl. Inst. & Meth. Phys. Res. A 701, 25.CrossRefGoogle Scholar
Singh, K.P. (2005). Electron acceleration by a chirped short intense laser pulse in vacuum. Appl. Phys. Lett. 87, 254102.CrossRefGoogle Scholar
Sohbatzadeh, F. & Aku, H. (2011). Polarization effect of a chirped Gaussian laser pulse on the electron bunch acceleration. J. Plasma Phys. 77, 39.CrossRefGoogle Scholar
Sohbatzadeh, F., Mirzanejhad, S. & Aku, H. (2009). Synchronization scheme in electron vacuum acceleration by a chirped Gaussian laser pulse. Phys. Plasma 16, 023106.CrossRefGoogle Scholar
Sohbatzadeh, F., Mirzanejhad, S. & Ghasemi, M. (2006). Electron acceleration by a chirped Gaussian laser pulse in vacuum. Phys. Plasma 13, 123108.CrossRefGoogle Scholar
Sohbatzadeh, F., Mirzanejhad, S., Aku, H. & Ashouri, S. (2010). Chirped Gaussian laser beam parameters in paraxial approximation. Phys. Plasma 17, 083108.CrossRefGoogle Scholar
Umstadter, D., Kim, J., Esarey, E., Dodd, E. & Neubert, T. (1995). Resonantly laser-driven plasma waves for electron acceleration. Phys. Rev. E 51, 3484.CrossRefGoogle ScholarPubMed
Wang, P.X., Ho, Y.K., Yuan, X.Q., Kong, Q., Cao, N., Sessler, A.M., Esarey, E. & Nishida, Y. (2001). Vacuum electron acceleration by an intense laser. Appl. Phys. Lett. 78, 2253.CrossRefGoogle Scholar
Woodward, P.M. (1947). A method of calculating the field over a plane. J. Inst. Elect. Eng. 93, 1554.Google Scholar
Xie, Y.J., Wang, W., Zheng, L., Zhang, X.P., Kong, Q., Ho, Y.K. & Wang, P.X. (2010). Field structure and electron acceleration in a slit laser beam. Laser Part. Beams 28, 21.CrossRefGoogle Scholar
Xu, J.J., Kong, Q., Chen, Z., Wang, P.X., Wang, W., Lin, D. & Ho, Y.K. (2007). Polarization effect of fields on vacuum laser acceleration. Laser Part. Beams 25, 253CrossRefGoogle Scholar
Yanovsky, V., Chvykov, V., Kalinchenko, G., Rousseau, P., Planchon, T., Matsuoka, T., Maksimchuk, A., Nees, J., Cheriaux, G., Mourou, G. & Krushelnick, K. (2008). Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Expr. 16, 2109.CrossRefGoogle ScholarPubMed