Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T01:20:37.922Z Has data issue: false hasContentIssue false

Shock pressure induced by 0.44 μm laser radiation on aluminum targets

Published online by Cambridge University Press:  25 March 2004

D. BATANI
Affiliation:
Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano Bicocca and INFM, Milano, Italy
H. STABILE
Affiliation:
Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano Bicocca and INFM, Milano, Italy
A. RAVASIO
Affiliation:
Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano Bicocca and INFM, Milano, Italy
T. DESAI
Affiliation:
Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano Bicocca and INFM, Milano, Italy
G. LUCCHINI
Affiliation:
Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano Bicocca and INFM, Milano, Italy
F. STRATI
Affiliation:
Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano Bicocca and INFM, Milano, Italy
J. ULLSCHMIED
Affiliation:
Prague Asterix Laser Research Centre, Prague, Czech Republic
E. KROUSKY
Affiliation:
Prague Asterix Laser Research Centre, Prague, Czech Republic
J. SKALA
Affiliation:
Prague Asterix Laser Research Centre, Prague, Czech Republic
B. KRALIKOVA
Affiliation:
Prague Asterix Laser Research Centre, Prague, Czech Republic
M. PFEIFER
Affiliation:
Prague Asterix Laser Research Centre, Prague, Czech Republic
C. KADLEC
Affiliation:
Prague Asterix Laser Research Centre, Prague, Czech Republic
T. MOCEK
Affiliation:
Prague Asterix Laser Research Centre, Prague, Czech Republic
A. PRÄG
Affiliation:
Prague Asterix Laser Research Centre, Prague, Czech Republic
H. NISHIMURA
Affiliation:
Institute of Laser Engineering (ILE), Osaka University, Osaka, Japan
Y. OCHI
Affiliation:
Institute of Laser Engineering (ILE), Osaka University, Osaka, Japan
A. KILPIO
Affiliation:
General Physics Institute, Russian Academy of Sciences, Moscow, Russia
E. SHASHKOV
Affiliation:
General Physics Institute, Russian Academy of Sciences, Moscow, Russia
I. STUCHEBRUKHOV
Affiliation:
General Physics Institute, Russian Academy of Sciences, Moscow, Russia
V. VOVCHENKO
Affiliation:
General Physics Institute, Russian Academy of Sciences, Moscow, Russia
I. KRASUYK
Affiliation:
General Physics Institute, Russian Academy of Sciences, Moscow, Russia

Abstract

Shock pressure generated in aluminum targets due to the interaction of 0.44 μm (3 ω of iodine laser) laser radiation has been studied. The laser intensity profile was smoothed using phase zone plates. Aluminum step targets were irradiated at an intensity I ≈ 1014 W/cm2. Shock velocity in the aluminum target was estimated by detecting the shock luminosity from the target rear using a streak camera to infer the shock pressure. Experimental results show a good agreement with the theoretical model based on the delocalized laser absorption approximation. In the present report, we explicitly discuss the importance of target thickness on the shock pressure scaling.

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arad, B., Eliezer, S., Gazit, Y., Loebenstein, H.M., Zigler, A., Zmora, H. & Zweigenbaum, S. (1979). Burn-through of thin aluminum foils by laser-driven ablation. J. Appl. Phys. 50, 66176821.Google Scholar
Batani, D., Bleu, C. & Lower, Th. (2002). Modelistic, simulation and application of phase plates. Eur. Phys. J. D 19, 231238.Google Scholar
Batani, D., Löwer, Th., Strati, F., Hall, T., Benuzzi, A. & Koenig, M. (2003). Production of high quality shocks for Equation of State Experiments. Eur. Phys. J. D 23, 99107.Google Scholar
Caruso, A. & Gratton, R. (1968). Some properties of the plasmas produced by irradiating light solids by laser pulses. Plasma Phys. 10, 867877.Google Scholar
Decoste, R., Bodner, S.E., Ripin, B.H., McLean, E.A., Obenschain, S.P. & Armstrong, C.M. (1979). Ablative Acceleration of Laser-Irradiated Thin-Foil Targets. Phys. Rev. Lett. 42, 16731677.Google Scholar
Eidmann, K., Amiranoff, F., Fedosejevs, R., Maaswinkel, A.G.M., Petsch, R., Sigel, R., Spindler, G., Yung-lu, Teng, Tsakiris, G. & Witkowski, S. (1984). Interaction of 1.3-μm laser radiation with thin foil targets. Phys. Rev. A 30, 25682589.Google Scholar
Fabbro, R. (1982). Etude de L'influence de la longuer D'onde laser sur les processus de conduction thermique et D'ablation dans les plasmas crees par laser. Ph.D. thesis, Paris, France: University of Paris.
Fabbro, R., Max, C. & Fabre, E. (1985). Planar laser-driven ablation: Effect of inhibited electron thermal conduction. Phys. Fluids 28, 14631481.Google Scholar
Godwal, B.K., Shirsat, T.S. & Pant, H.C. (1989). Laser-induced ablation pressure in thin gold foils. J. Appl. Phys. 65, 46084611.Google Scholar
Goldsack, T.J., Kilkenny, J.D., MacGowan, B.J., Veats, S.A., Cunningham, P.F., Lewis, C.L.S., Key, M.H., Rumsby, P.T. & Toner, W.T. (1982). The variation of mass ablation rate with laser wavelength and target geometry. Op. Comm. 42, 5559.Google Scholar
Grun, J., Decoste, R., Ripin, B.H. & Gardner, J. (1981). Characteristics of ablation plasma from planar, laser-driven targets. Appl. Phys. Lett. 39, 545547.Google Scholar
Gupta, P.D., Tsui, Y.Y., Popil, R., Fedosejevs, R. & Offenberger, A.A. (1987). Ablation parameters in KrF laser/plasma interaction: An experimental study. Phys. Fluids 30, 179185.Google Scholar
Jungwirth, K., Cejnarova, A., Juba, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P. & Ullschmied, J. (2001). The Prague Astrix Laser System. Phys. Plasmas 8, 24952501.Google Scholar
Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, M. & Yamanaka, C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett. 53, 10571060.Google Scholar
Key, M.H., Toner, W.T., Goldsack, T.J., Kilkenny, J.D., Veats, S.A., Cunningham, P.F. & Lewis, C.L.S. (1983). A study of ablation by laser irradiation of plane targets at wavelengths 1.05, 0.53, and 0.35 μm. Phys. Fluids 26, 20112026.Google Scholar
Kidder, R.E. (1974). Inertial fusion energy. Nucl. Fus. 14, 797.Google Scholar
Koenig, M., Fabre, E., Malka, V., Michard, A., Hammerling, P., Batani, D., Boudenne, J.M., Garconnet, J.P. & Fews, P. (1992). Recent results on implosions directly driven at I = 0.26 I¼m laser wavelength. Laser Part. Beams 10, 573583.Google Scholar
Koenig, M., Faral, B., Boudenne, J.M., Batani, D., Benuzzi, A., Bossi, S., Remond, C., Perrine, J.P., Temporal, M. & Atzeni, S. (1995). Relative consistency of equations of state by laser driven shock waves. Phys. Rev. Lett. 74, 22602263.Google Scholar
Lebo, I.G., Mikhailov, Yu.A., Tishkin, V.F. & Zvorykin, V.D. (1999). Analysis and 2D numerical modeling of burn through of metallic foil experiments using power KrF and Nd lasers. Laser Part. Beams 17, 753758.Google Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.Google Scholar
Max, C.E., McKee, C.F. & Mead, W.C. (1982). A model for laser driven ablative implosions. Phys. Fluids 23, 16201645.Google Scholar
Meyer, B. & Thiell, G. (1984). Experimental scaling laws for ablation parameters in plane target-laser interaction with 1.06 μm and 0.35 μm laser wavelengths. Phys. Fluids 27, 302311.Google Scholar
Mora, P. (1982). Theoretical model of absorption of laser light by a plasma. Phys. Fluids 25, 10511056.Google Scholar
Nishimura, H., Azechi, H., Yamada, K., Tamura, A., Inada, Y., Matsuoka, F., Hamada, M., Suzuki, Y., Nakai, S. & Yamanaka, C. (1981). Experimental study of wavelength dependences of laser-plasma coupling, transport, and ablation processes. Phys. Rev. A 23, 20112019.Google Scholar
Obenschain, S.P., Grun, J., Ripin, B.H. & McLean, E.A. (1981). Uniformity of laser-driven, ablatively accelerated targets. Phys. Rev. Lett. 46, 14021405.Google Scholar
Pant, H.C., Sharma, S. & Shirsat, T.S. (1984). Effect of lateral energy transport on ion expansion energy scaling in laser produced plasma. J. Appl. Phys. 55, 697704.Google Scholar
Pelah, I. (1976). Diagnosis of laser produced plasma with charge collectors. Phys. Lett. A 59, 348352.Google Scholar
Ripin, B.H., Decoste, R., Obenschain, S.P., Bodner, S.E., McLean, E.A., Young, F.C., Whitlock, R.R., Armstrong, C.M., Grun, J., Stamper, J.A., Gold, S.H., Nagel, D.J., Lehmberg, R.H. & McMahon, J.M. (1980). Laser-plasma interaction and ablative acceleration of thin foils at 1012–1015 W/cm2. Phys. Fluids 23, 10121030.Google Scholar
Sakaiya, T., Azechi, H., Matsuoka, M., Izumi, N., Nakai, M., Shigemori, K., Shiraga, H., Sunahara, A., Takabe, H. & Yamanaka, T. (2002). Ablative Rayleigh-Taylor instability at short wavelenghts observed with moiré interferometry. Phys. Rev. Lett. 88, 145003.Google Scholar
Shirsat, T.S., Sharma, S. & Pant, H.C. (1986). Calorimetric study of laser irradiated thin foil targets. Pramana, Ind. J. Phys. 27, 701710.Google Scholar
Shirsat, T.S., Parab, H.D. & Pant, H.C. (1989). Effect of target atomic number on laser induced ablation pressure scaling. Laser Part. Beams 7, 795799.Google Scholar
SESAME Report on the Los Alamos equation-of-state library. (1983). Report No. LALP-83-4 (T4 Group LANL, Los Alamos).
Stevenson, R.M., Norman, M.J., Bett, T.H., Pepler, D.A., Danson, C.N. & Ross, I.N. (1994). Binary-phase zone plate arrays for the generation of uniform focal profiles. Optics Letters 19, 363369.Google Scholar
Trainor, R.J., Shaner, J.W., Auerbach, J.M. & Holmes, N. C. (1979). Ultrahigh-pressure laser-driven shock-wave experiments in aluminum. Phys. Rev. Lett. 42, 11541157.Google Scholar
Veeser, L.R., & Solem, J.C. (1978). Studies of laser-driven shock waves in aluminum. Phys. Rev. Lett. 40, 13911394.Google Scholar
Zeldovich, Ya.B. & Raizer, Yu.P. (1967). Physics of shock waves and high temperature hydrodynamic phenomena. New York: Academic Press.