Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T03:35:46.407Z Has data issue: false hasContentIssue false

Scaling of plasmas, heated and ponderomotively confined by powerful laser radiation

Published online by Cambridge University Press:  15 October 2009

V.V. Korobkin
Affiliation:
General Physics Institute, Academy of Sciences of Russia, Moscow, 117942, Russia
M. Yu. Romanovsky
Affiliation:
General Physics Institute, Academy of Sciences of Russia, Moscow, 117942, Russia Institute for Physics, Humboldt University, 10099 Berlin, Germany

Abstract

It is shown that a powerful laser beam is capable of the ponderomotive confinement of plasma with electron density exceeding the critical density for the radiation under review. The theory describing force and heat balances of the plasma together with the propagation of the laser radiation is developed. The laws of the dense plasma scaling for controlled thermonuclear fusion (CTF) and other applications are formulated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.Aet al. 1967 Uspekhi Fizicheskih nauk [Sov. Phys.–Uspekhi] 93, 19.Google Scholar
Akhmeteli, A.M. 1991. Pis'ma v ZTF [Sov. Phys.–ZTP Lett.] 176, 21.Google Scholar
Arzimovich, L.A. & Sagdeev, R.Z. 1979 Fizika plazmy dlya fizikov (Plasma Physics for Physicists) (Atomizdat, Moscow) (in Russian).Google Scholar
Danilov, Yu.A. & Berman, V.S. 1981 Dokl. AN SSSR [Sov. Phys.–Acad. Sci. Rep.] 258, 67.Google Scholar
Duderstadt, J.J. & Moses, G.A. 1982 Inertial Confinement Fusion (New York, John Wiley and Sons).Google Scholar
Elton, R.C. 1990 X-Ray Lasers (New York, Academic Press, Inc.).Google Scholar
Kaw, P. & Dawson, J.M. 1969 Phys. Fluids 12, 2586.CrossRefGoogle Scholar
Kempbell, E.M. 1993 LLNL/CIS Workshop, February 8–12, Livermore, CA.Google Scholar
Korobkin, V.V. & Romanovsky, M.Yu. 1994 Phys. Rev. E 49, 2316.CrossRefGoogle Scholar
Koshelev, K.N.et al. 1989 Fiz. Plasmy [Sov. J. Plazma Phys.] 15, 1068.Google Scholar
Kruer, W.L.et al. 1970 Phys. Rev. Lett. 24, 987.CrossRefGoogle Scholar
Kuramoto, Y. & Tsuzuki, T. 1975 Progr. Theor. Phys. 54, 687.Google Scholar
Landau, L.D. & Lifshitz, E.M. 1959 Electrodynamics of Continuous Media (London, Pergamon).Google Scholar
Macgowan, B.J.et al 1987 J. Appi. Phys. 61, 5243.Google Scholar
Matthews, D.L.et al. 1985 Phys. Rev. Lett. 54, 110.Google Scholar
Maxon, S.et al 1989 Phys. Rev. Lett. 63, 236.Google Scholar
Motz, H. & Watson, C.J. 1967 Adv. Electron. Electron Phys. 23, 154.Google Scholar
Shearer, J.M. & Eddleman, J.L. 1973 Phys. Fluids 16, 1753.CrossRefGoogle Scholar
Vinogradov, A.V. & Shlyaptsev, V.N. 1983 Kvantovaya Elektronika [Sov. J. Quant. Electron.] 10, 2325.Google Scholar
Yamanaka, C. 1992 In Short Wavelength Lasers and Their Applications, Korobkin, V.V. and Romanovsky, M.Yu., eds. (New York, Nova Science Publishers), p. 189.Google Scholar
Yankov, V.V. 1991 Fiz, Plasmy [Sov. J. Plasma Phys.] 17, 521.Google Scholar
Yariv, A. 1976 Introduction to Optical Electronics (New York, Holt, Rinehart and Winston).Google Scholar