Hostname: page-component-cc8bf7c57-j4qg9 Total loading time: 0 Render date: 2024-12-11T23:09:46.934Z Has data issue: false hasContentIssue false

Resonant excitation of the upper hybrid wave by relativistic cross focusing of two laser beams

Published online by Cambridge University Press:  24 June 2009

Gunjan Purohit*
Affiliation:
Department of Physics, D. A. V. P. G. College, Dehradun, India
Prashant Chauhan
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
R.P. Sharma
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
*
Address correspondence and reprint requests to: G. Purohit, Department of Physics, D. A. V. P. G. College, Dehradun, Uttarakhand-246174, India. E-mail: [email protected]

Abstract

This article presents the resonant excitation of the upper hybrid wave (UHW) by cross focusing of two high power laser beams in a collisionless hot magnetoplasma; taking into account the relativistic nonlinearity. The electric vectors of the two beams are polarized along uniform static magnetic field and the beams propagate perpendicular to the static magnetic field. The resonant excitation of the UHW occurs when the frequency difference (FD) of the two laser beams and difference of their propagation vector satisfy the dispersion relation corresponding to the UHW. It has been observed that the power associated with the excited UHW, which depends on the background electron concentration, magnetic field and the intensity of the two laser beams, becomes drastically modified with the distance of propagation. The effect of the excited UHW at the FD on the acceleration of electrons has also been discussed. The amplitude of the UHW, excited by two high power laser beams and the electron energy are also calculated. This study is relevant in heating of plasma near the upper hybrid frequency as well as electron acceleration. The results are presented for typical laser plasma parameters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609636.CrossRefGoogle Scholar
Anderson, D. & Bonnedal, M. (1997). Variational approach to nonlinear self-focusing of Gaussian laser beams. Phys. Fluids 22, 105109.CrossRefGoogle Scholar
Barr, H.C., Boyd, T.J.M., Gardner, L.R.T. & Rankin, R. (1984). Raman and two-plasmon decay instabilities in magnetized plasma. Phys. Fluids 27, 27302737.CrossRefGoogle Scholar
Bessonov, E.G., Gorbunkov, M.V., Ishkhanov, B.S., Kostryukov, P.V., Maslova, Y.Y.A., Shvedunov, V.I., Tunkin, V.G. & Vinogradov, A.V. (2008). Laser-electron generator for X-ray applications in science and technology. Laser Part. Beams 26, 489495.CrossRefGoogle Scholar
Bingham, R., Mendonca, J.T. & Shukla, P.K. (2004). Plasma based charged-particle accelerators. Plasma Phys. Contr. Fusion 46, R1R23.CrossRefGoogle Scholar
Borghesi, M., Mackinnon, A.J., Gaillard, R., Willi, O., Pukhov, A. & Meyer-Ter-Vehn, J. (1998). Large quasistatic magnetic fields generated by a relativistically intense laser pulse propagating in a preionized plasma. Phys. Rev. Lett. 80, 51375140.CrossRefGoogle Scholar
Deutsch, C., Bret, A., Firpo, M.C., Gremillet, L., Lefebvre, E. & Lifschitz, A. (2008). Onset of coherent electromagnetic structures in the relativistic electron beam deuterium-tritium fuel interaction of fast ignition concern. Laser Part. Beams 26, 157165.CrossRefGoogle Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 24832486.CrossRefGoogle ScholarPubMed
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288CrossRefGoogle Scholar
Estabrook, K. & Kruer, W.L. (1983). Theory and simulation of one-dimensional Raman backward and forward scattering. Phys. Fluids 26, 18921901.CrossRefGoogle Scholar
Filip, C.V., Narang, R. & Tochitsky, S.Ya. (2004). Nonresonant beat-wave excitation of relativistic plasma waves with constant phase velocity for charged-particle acceleration. Phys. Rev. E 69, 026404026411.CrossRefGoogle ScholarPubMed
Fuchs, J., Malka, V. & Adam, J.C. (1998). Dynamics of subpicosecond relativistic laser pulse self-channeling in an underdense preformed plasma. Phys. Rev. Lett. 80, 16581661.CrossRefGoogle Scholar
Gill, T.S. & Saini, N.S. (2007). Nonlinear interaction of a rippled laser beams with an electrostatic upper hybrid wave in collisional plasma. Laser Part. Beams 25, 283293.CrossRefGoogle Scholar
Grebogi, C. & Liu, C.S. (1980). Parametric decay of extraordinary electromagnetic waves into two upper hybrid plasmons. J. Phys. Plasma 23, 147156.CrossRefGoogle Scholar
Hong, W., He, Y., Wen, T., Du, H., Teng, J., Qing, X., Huang, Z., Huang, W., Liu, H., Wang, X., Huang, X., Zhu, Q., Ding, Y. & Peng, H. (2009). Spatial and temporal characteristics of X-ray emission from hot plasma driven by a relativistic femtosecond laser pulse. Laser Part. Beams 27, 1926.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Jha, P., Kumar, P., Raj, G. & Upadhyay, A.K. (2005). Modulation instability of laser pulse in laser plasma. Phys. Plasmas 12, 123104123109.CrossRefGoogle Scholar
Jha, P., Mishra, R.K., Upadhyaya, A.K. & Raj, G. (2006). Self-focusing of intense laser beam in magnetized plasma. Phys. Plasmas 13, 103102103106.CrossRefGoogle Scholar
Jonathan, S.W. (1994). Advanced accelerator concepts. Phys. Today 47, 3347.Google Scholar
Krall, J. (1993). Enhanced acceleration in a self-modulated-laser wake-field accelerator. Phys. Rev. E 48, 21572161.CrossRefGoogle Scholar
Krasovitskiy, V.K., Turikov, V.A. & Sotnikov, V.I. (2007). Nonlinear dispersion of resonance extraordinary wave in a plasma with strong magnetic field. J. Phys. Plasma 14, 092108092117.CrossRefGoogle Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser Part. Beams 26, 397409.CrossRefGoogle Scholar
Laham, N.M., Al Nasser, A.S. & Khateeb, A.M. (1998). Effects of axial magnetic fields on backward Raman scattering in inhomogeneous plasmas. Phys. Scr. 57, 253257.CrossRefGoogle Scholar
Laham, N.M., Khateeb, A.M., Al Nasser, A.S. & Odeh, I.M. (2000). The two-plasmon decay of an extraordinary electromagnetic wave in a magnetized homogeneous plasma. Phys. Plasmas 7, 39933997.CrossRefGoogle Scholar
Lindberg, R.R., Charman, A.E., Wurtele, J.S. & Friedland, L. (2004). Observation and control of transverse energy-transport barrier due to the formation of energetic-electron layer with sheared E × B flow. Phys. Rev. Lett. 93, 055001055004.CrossRefGoogle Scholar
Mckenna, P., Carroll, D.C., Lundh, O., Nurnberg, F., Markey, K., Bandyopadhyay, S., Batani, D., Evans, R.G., Jafer, R., Kar, S., Neely, D., Pepler, D., Quinn, M.N., Redaelli, R., Roth, M., Wahlstrom, C.G., Yuan, X.H. & Zepf, M. (2008). Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets. Laser Part. Beams 26, 591596.CrossRefGoogle Scholar
Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.H., Joshi, C., Malka, V., Darrow, C.B., Danson, C., Neely, D. & Walsh, F.N. (1995). Electron acceleration from the breaking of relativistic plasma waves. Nat. 377, 606608.CrossRefGoogle Scholar
Mori, W.B. (1987). On beat wave excitation of relativistic plasma waves. IEEE Trans. Plasma Sci. 15, 88106.CrossRefGoogle Scholar
Nakamura, T., Mima, K., Sakagami, H., Johzaki, T. & Nagatomo, H. (2008). Generation and confinement of high energy electrons generated by irradiation of short laser pulses onto cone targets. Laser Part. Beams 26, 207212.CrossRefGoogle Scholar
Purohit, G., Chauhan, P.K. & Sharma, R.P. (2008 a). Excitation of an upper hybrid wave by a high power laser beam in plasma. Laser Part. Beams 26, 6168.CrossRefGoogle Scholar
Purohit, G., Chauhan, P.K. & Sharma, R.P. (2008 b). Dynamics of the excitation of an upper hybrid wave by a rippled laser beam in magneto-plasma. Phys. Plasmas 15, 052101052109.CrossRefGoogle Scholar
Rena, C. & Mori, W.B. (2004). Nonlinear and three-dimensional theory for cross-magnetic field propagation of short-pulse lasers in underdense plasmas. Phys. Plasmas 11, 19781986.CrossRefGoogle Scholar
Shukla, P.K. (1999). Generation of wakefields by elliptically polarized laser pulses in a magnetized plasma. Phys. Plasmas 6, 13631365.CrossRefGoogle Scholar
Shvets, G. (2004). Beat-wave excitation of plasma waves based on relativistic bistability. Phys. Rev. Lett. 93, 195004195007.CrossRefGoogle ScholarPubMed
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Progress in Optics. Amsterdam: North Holland.Google Scholar
Sodha, M.S., Maheshwari, K.P., Sharma, R.P. & Kaushik, S.C. (1979). Resonant excitation of the upper hybrid wave by 2 EM beams. J. Appl. Phys. 50, 1215612162.CrossRefGoogle Scholar
Sodha, M.S., Tewari, D.P., Patheja, B.L. & Sharma, R.P. (1979). Excitation of an upper hybrid wave by a Gaussian electromagnetic beam in ordinary mode. Plasma Phys. 21, 267278.CrossRefGoogle Scholar
Spence, N., Katsouleas, T., Muggli, P., Mori, W.B. & Hemker, R. (2001). Simulations of Cerenkov wake radiation sources. Phys. Plasma 8, 49955004.CrossRefGoogle Scholar
Sprangle, P., Ting, A. & Tang, C.M. (1987). Radiation focusing and guiding with application to the free electron laser. Phys. Rev. Lett. 59, 202205.CrossRefGoogle Scholar
Umeash, G. & Sharma, R.P. (1979). Conversion of an ordinary EM beam into an extraordinary beam in a magnetoplasma. Plasma Phys. 21, 545556.CrossRefGoogle Scholar
Umstadter, D. (2003). Relativistic laser-plasma interactions. J. Phys. D 36, R151R165.CrossRefGoogle Scholar
Xie, B.S., Aimidula, A., Niu, J.S., Liu, J. & Yu, M.Y. (2009). Electron acceleration in the wakefield of asymmetric laser pulses. Laser Part. Beams 27, 2732.CrossRefGoogle Scholar
Yoshii, J., Lai, C.H., Katsouleas, T., Joshi, C. & Mori, W.B. (1997). Radiation from Cerenkov wakes in magnetized plasma. Phys. Rev. Lett. 79, 41944197.CrossRefGoogle Scholar