Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-03T05:27:26.212Z Has data issue: false hasContentIssue false

Resonance absorption enhancement in laser-generated plasma ablating Cu treated surfaces

Published online by Cambridge University Press:  27 November 2012

L. Torrisi*
Affiliation:
Dipartimento di Fisica, Università di Messina, S. Agata, Italy
M. Cutroneo
Affiliation:
Dipartimento di Fisica, Università di Messina, S. Agata, Italy Centro Siciliano di Fisica Nucleare e Str. d. Materia, Catania, Italy
F. Caridi
Affiliation:
Dipartimento di Fisica, Università di Messina, S. Agata, Italy
C. Gentile
Affiliation:
Dipartimento di Fisica, Università di Messina, S. Agata, Italy
*
Address correspondence and reprint requests to: Lorenzo Torrisi, Dipartimento di Fisica, Università di Messina, V.le F. Stagno D'Alcontres 31, 98166 S. Agata (ME), Italy. E-mail: [email protected]

Abstract

Resonant absorption effects for 1.064 µm infrared laser pulse radiations are investigated by using different techniques producing micrometric surface structures with dimensions comparable to the wavelength value. The laser absorption is controlled through measurement of the Cu ion acceleration using time-of-flight approach. Surface treatments include low energy laser etching in air, deposition of microspheres obtained ablating Cu targets in water, pulse laser deposition of microstructures precursor of thin homogeneous film, chemical etching with HNO3 acid, Ar+ ion sputtering and rolling burnishing surface of thin Cu foils. Results indicate that the best resonance effect is obtained with the rolling burnishing, ion sputtering and microsphere deposition processes which enhance the Cu ion energy and the yield emission.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ghose, D., Brinkmann, U. & Hippler, R. (1997). Phys. Rev. B 55, 13989.Google Scholar
Giulietti, D. & Gizzi, L.A. (1998). La Rivista del Nuovo Cimento 21, 1.CrossRefGoogle Scholar
Goodfellow Catalog. (2012). http://www.goodfellow.com/.Google Scholar
Hassan, A.M. (1977). J. Mater. Processing Tech. 72, 385391.CrossRefGoogle Scholar
Mezzasalma, A.M., Mondio, G., Serafino, T., Caridi, F. & Torrisi, L. (2009). Appl. Surf. Sci. 255, 41234128.CrossRefGoogle Scholar
Torrisi, L., Andò, L., Ciavola, G., Gammino, S. & Barnà, A. (2001). Rev. of Sci. Instr. 72, 6872.CrossRefGoogle Scholar
Torrisi, L., Caridi, F. & Giuffrida, L. (2011). Laser Part. Beams 29, 2937.CrossRefGoogle Scholar
Torrisi, L., Caridi, F., Visco, A.M. & Campo, N. (2011). Appl. Surf. Sci. 257, 25672575.CrossRefGoogle Scholar
Tsuji, T., Nakanishi, M., Mizuki, T., Tsuji, M., Doi, T., Yahiro, T. & Yamaki, J. (2009). Appl. Surf. Sci. 255, 96269629.CrossRefGoogle Scholar
Zhuang, D. & Edgar, J.H. (2005). Mater. Sci. Engineer. R 48, 146.CrossRefGoogle Scholar