Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T20:34:11.592Z Has data issue: false hasContentIssue false

Relativistic electron heating in focused multimode laser fields with stochastic phase perturbations

Published online by Cambridge University Press:  18 September 2008

Y.A. Mikhailov*
Affiliation:
P.N. Lebedev Physical Institute, Moscow, Russia
L.A. Nikitina
Affiliation:
P.N. Lebedev Physical Institute, Moscow, Russia
G.V. Sklizkov
Affiliation:
P.N. Lebedev Physical Institute, Moscow, Russia
A.N. Starodub
Affiliation:
P.N. Lebedev Physical Institute, Moscow, Russia
M.A. Zhurovich
Affiliation:
P.N. Lebedev Physical Institute, Moscow, Russia
*
Address correspondence and reprint requests to: Y.A. Mikhailov, P.N. Lebedev Physical Institute, Moscow, Russia. E-mail: [email protected]

Abstract

We describe a direct model for simulation of relativistic electrons acceleration with a given electromagnetic field which is determined by wave packet parameters. The multimode time-spatial structure of a focused Nd-laser beam with stochastic phase disturbances of each spectral component is taken into account as a source of random forces. Electron energies of more than 10 MeV are obtained even at moderate flux densities of 1016 W/cm2. The developed numerical code makes it possible to obtain a quantitative energy distribution function in relation to both field intensity and the temporal bell-shape of the laser pulse. The efficient heating of electrons can be triggered in the presence of a counter propagating wave being reflected from the critical plasma area with a different reflection coefficient. The heating mechanism occurs with a delay relative to the beginning of the pulse when the laser fields exceed some threshold amplitudes. The qualitative comparison of simulation results with the experimental data is given as evidence that this mechanism is reasonable.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J., Glowacz, S., Hora, H., Jablonski, S. & Wolowski, J. (2006). Studies on laser-driven generation of fast high-density plasma blocks for fast ignition. Laser Part. Beams 24, 249254.CrossRefGoogle Scholar
Bret, A., Firpo, M.C. & Deutsch, C. (2006). Between two stream and filamentation instabilities: Temperature and collisions effects. Laser Part. Beams 24, 2733.CrossRefGoogle Scholar
Bret, A., Firpo, M.C. & Deutsch, C. (2007). About the most unstable modes encountered in beam plasma interaction physics. Laser Part. Beams 25, 117119.CrossRefGoogle Scholar
Chen, H. & Wilks, S.C. (2005). Evidence of enhanced effective hot electron temperatures in ultraintense laser-solid interactions due to reflexing. Laser Part. Beams 23, 411416.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Gibbon, P. (1994). Efficient production of fast electrons from femtosecond laser interaction with solid targets. Phys. Rev. Lett. 73, 664667.CrossRefGoogle ScholarPubMed
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Ivanov, V.V., Knyazev, A.K., Kutsenko, A.V., Matsveiko, A.A., Mikhailov, Yu.A., Osetrov, V.P., Popov, A.I., Sklizkov, G.V. & Starodub, A.N. (1996). Investigation of the generation of high-energy electrons in a laser plasma. JETP 82, 677682.Google Scholar
Ivanov, V.V., Knyazev, A.K., Kutsenko, A.V., Matsveiko, A.A., Mikhailov, Yu.A., Osetrov, V.P., Popov, A.I., Sklizkov, G.V. & Starodub, A.N. (1995). Method of fast electron observation in laser plasma. Prib. Tekn. Eksp. 4, 112116.Google Scholar
Key, M.H., Campbell, E.M., Cowan, T.E., Hatchett, S.P., Henry, E.A., Koch, J.A., Langdon, A.B., Lasinski, B.F., MacKinnon, A., Offenberger, A.A., Pennington, D.M., Perry, M.D., Phillips, T.J., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Tsukamoto, M., Wharton, K.B. & Wilks, S.C. (1998). The potential of fast ignition and related experiments with a petawatt laser facility. J. Fusion Energy 17, 231236.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Maiorov, E.V., Okorokov, V.V. & Sveshnikova, N.V. (2004). Acceleration by nonuniform stochastic fields. Preprint 9-04. Moscow: Institute of Theoretical and Experimental Physics.Google Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Laser Part. Beams 24, 58.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 5159.CrossRefGoogle Scholar
Rousseaux, C., Amiranoff, F., Labaune, C. & Matthieussent, G. (1992). Suprathermal and relativistic electrons produced in laser-plasma interaction at 0.26, 0.53, and 1.05 µm laser wavelength. Phys. Fluids B 4, 25892595.CrossRefGoogle Scholar
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006), Fast ignition integrated interconnecting code project for cone-guided targets. Laser Part. Beams 24, 191198.CrossRefGoogle Scholar
Sentoku, Y., Bychenkov, V.Y., Flippo, K., Maksimchuk, A., Mima, K., Mourou, G., Sheng, Z.M. & Umstadter, D. (2002). High-energy ion generation in interaction of short laser pulse with high-density plasma. Appl. Phys. B 74, 207215.CrossRefGoogle Scholar
Sheng, Z-M., Mima, K., Zhang, J. & Meyer-ter-Vehn, J. (2004). Efficient acceleration of electrons with counterpropagating intense laser pulses in vacuum and underdense plasma. Phys. Rev. E 69, 016407-1/016407-12.CrossRefGoogle ScholarPubMed
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar
Yu, W., Yu, M.Y., Xu, H., Tian, Y.W., Chen, J. & Wong, A.Y. (2007). Intense local plasma heating by stopping of ultrashort ultraintense laser pulse in dense plasma. Laser Part. Beams 25, 631638.CrossRefGoogle Scholar
Zhang, P., Saleh, N., Chen, S., Sheng, Z.M. & Umstadter, D. (2003). Laser-energy transfer end enhancement of plasma waves and electron beams by interfering high-intensity laser pulses. Phys. Rev. Lett. 91(22), 225001-1/225001-4.CrossRefGoogle Scholar
Zvorykin, V.D., Didenko, N.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritskii, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Seleznev, L.V., Sinitsyn, D.V., Tenyakov, S.Y., Ustinovskii, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams 25, 435451.CrossRefGoogle Scholar