Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T18:06:34.819Z Has data issue: false hasContentIssue false

Relativistic and ponderomotive effects on evolution of laser beam in a non-uniform plasma channel

Published online by Cambridge University Press:  21 January 2010

T.S. Gill*
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India
R. Mahajan
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India
R. Kaur
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India
*
Address correspondence and reprint requests to: T.S. Gill, Department of Physics, Guru Nanak Dev University, Amritsar 143005, India. E-mail: [email protected]

Abstract

The nonlinear parabolic partial differential equation governing the evolution of the complex envelope in the slowly varying envelope approximation is solved using the variational approach. The basic nonlinear phenomena of relativistic and ponderomotive self-focusing in a plasma channel are taken into account. Self-focusing, self-phase modulation as well as self-trapping of laser beam is studied in a variety of situations. Further, in the absence of dissipation mechanisms, the stability of the beam is also studied.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdullaev, F.K., Baizakov, B. & Salerno, M. (2003). Stable two-dimensional dispersion-managed soliton. Phys. Rev. E 68, 066605/1–4.CrossRefGoogle ScholarPubMed
Ablowitz, M.J. & Mussliamani, Z.H. (2003). Dark and gray strong dispersion-managed solitons. Phys. Rev. E 67, 025601/1–4.CrossRefGoogle ScholarPubMed
Abramyan, L.A., Litvak, A.G., Mironov, V.A. & Sergeev, A.M. (1992). Self-focusing and relativistic waveguiding of an ultrashort laser pulse in a plasma. Sov. Phys. JETP 75, 978.Google Scholar
Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp 10, 609636.CrossRefGoogle Scholar
Anderson, D. & Bonnedal, M. (1979). Variational approach to nonlinear self-focusing of Gaussian laser beams. Phys. Fluids 22, 105109.CrossRefGoogle Scholar
Andreev, A.A., Erokhin, N.S., Sutyagin, A.N. & Fadeev, A.P. (1987). Self-focusing of a laser beam in an expanding plasma which is inhomogeneous in two dimensions. Soviet J. Plasma Phys. 13, 608613.Google Scholar
Benware, B.R., Macchietto, C.D., Moreno, C.H. & Rocca, J.J. (1998). Demonstration of a high average power tabletop soft X-ray laser. Phys. Rev. Lett. 81, 58045807.CrossRefGoogle Scholar
Berge, L. (1998). Wave collapse in physics: principles and applications to light and plasma waves. Physics Rpt. 303, 259370.Google Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interactions. Laser Part. Beams 25, 161167.CrossRefGoogle Scholar
Borisov, A.B., Borovskiy, A.V., Korobkin, V.V., Prokhorov, A.M., Shiryaev, O.B., Shi, X.M., Luk, T.S., McPherson, A., Solem, J.C., Boyer, K. & Rhodes, C.K. (1992). Observation of relativistic and charge-displacement self-channeling of intense subpicosecond ultraviolet (248 nm) radiation in plasmas. Phys. Rev. Lett. 68, 23092312.CrossRefGoogle ScholarPubMed
Borisov, A.B., Longworth, J.W., Boyer, K. & Rhodes, C.K. (1998). Stable relativistic/charge-displacement channels in ultrahigh power density (1021 Watt/cm2) plasmas. Proc. Natl. Acad. Sci. 95, 78547859.CrossRefGoogle Scholar
Chen, S.Y., Sarkisov, G.S., Maksimchuk, A., Wagner, R. & Umstadter, D. (1998). Evolution of a plasma waveguide created during relativistic-ponderomotive self-channeling of an intense laser pulse. Phys. Rev. Lett. 80, 26102613.CrossRefGoogle Scholar
Chen, X.L. & Sudan, R.N. (1993). Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma. Phys. Rev. Lett. 70, 20822085.CrossRefGoogle ScholarPubMed
Chessa, P., Mora, P. & Antonsen, T.M. (1998). Numerical simulation of short laser pulse relativistic self-focusing in underdense plasma. Phys. Plasma 5, 34513458.CrossRefGoogle Scholar
Duda, B.J. & Mori, W.B. (2000). Variational principle approach to short-pulse laser-plasma interactions in three dimensions. Phys. Rev. E 61, 19251939.CrossRefGoogle ScholarPubMed
Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Gasilov, S.V., Stagira, S., Calegari, F., Nisoli, M., De Silvestri, S., Poletto, L., Villoresi, P. & Andreev, A.A. (2007). X-ray spectroscopy observation of fast ions generation in plasma produced by short low-contrast laser pulse irradiation of solid targets. Laser Part. Beams 25, 267275.CrossRefGoogle Scholar
Fauser, C. & Langhoff, H. (2000). Focussing of laser beams by means of a z-pinch formed plasma guiding system. Appl. Phy. B 71, 607609.CrossRefGoogle Scholar
Fedotov, A.B., Naumov, A.N., Silin, V.P., Uryupin, S.A., Zheltikov, A.M., Tarasevitch, A.P. & Von der Linde, D. (2000). Third-harmonic generation in a laser-pre-excited gas: the role of excited-state neutrals. Phys. Lett. A 271, 407412.CrossRefGoogle Scholar
Firth, W.J. (1977). Propagation of laser beams through inhomogeneous media. Opt. Commun. 22, 226230.CrossRefGoogle Scholar
Foldes, I.B., Bakos, J.S., Bakonyi, Z., Nagy, T. & Szatmari, S. (1999). Harmonic generation in plasmas of different density gradients. Phys. Lett. A 258, 312316.CrossRefGoogle Scholar
Gill, T.S., Saini, N.P. & Kaul, S.S. (2001). Two-dimensional self-focusing of a laser beam in an inhomogeneous laser-produced plasma. J. Plasma Phys. 66, 3951.CrossRefGoogle Scholar
Hafizi, B., Ting, A., Hubbard, R.F., Sprangle, P. & Penano, J.R. (2003). Relativistic effects on intense laser beam propagation in plasma channels. Phys. Plasma 10, 14831492.CrossRefGoogle Scholar
Hafizi, B., Ting, A., Sprangle, P. & Hubbard, R.F. (2000). Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E 62, 41204125.CrossRefGoogle ScholarPubMed
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspective for high energy density physics with intense heavy ions and laser beams. Laser Part. Beams 23, 395–395.CrossRefGoogle Scholar
Karlsson, M., Anderson, D., Desaix, M. & Lisak, M. (1991). Dynamic effects of Kerr nonlinearity and spatial diffraction on self-phase modulation of optical pulses. Opt. Lett. 16, 13731375.CrossRefGoogle ScholarPubMed
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkova, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.CrossRefGoogle Scholar
Konar, S. & Manoj, M. (2005). Effect of higher order nonlinearities on induced focusing and on the conversion of circular Gaussian laser beams into elliptic Gaussian laser beam. J. Opt. A: Pure Appl. Opt. 7, 576.CrossRefGoogle Scholar
Krushelnick, K., Ting, A., Moore, C.I., Burris, H.R., Esarey, E., Sprangle, P. & Baine, M. (1997). Plasma channel formation and guiding during high intensity short pulse laser plasma experiments. Phys. Rev. Lett. 78, 40474050.CrossRefGoogle Scholar
Kuehl, Th., Ursescu, D., Bagnoud, V., Javorkova, D., Rosmej, O., Cassou, K., Kazamias, S., Klisnick, A., Ros, D., Nickles, P., Zielbauer, B., Dunn, J., Neumayer, P., Pert, G. & The Phelix Team. (2007). Optimization of non thermal incidence, transient pumped plasma X-ray laser for laser spectroscopy and plasma diagnostics at the facility for antiproton and ion research (FAIR). Laser Part. Beams 25, 9397.CrossRefGoogle Scholar
Kurki-Suonio, T., Morrison, P.J. & Tajima, T. (1989). Self-focusing of an optical beam in a plasma. Phys. Rev. A 40, 32303239.CrossRefGoogle ScholarPubMed
Lakshman, M. & Rajasekar, S. (2003). Nonlinear Dynamics. New York: Springer Verlag.CrossRefGoogle Scholar
Lam, J.F., Lippmann, B. & Tappert, F. (1975). Moment theory of self-trapped laser beams with nonlinear saturation. Opt. Commun. 15, 419421.CrossRefGoogle Scholar
Lam, J.F., Lippmann, B. & Tappert, F. (1977). Self-trapped laser beams in plasma. Phys. Fluids 20, 11761179.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. (1976). Mechanics. Oxford: Pergammon Press.Google Scholar
Laska, L., Badziak, J., Boody, F.P., Gammino, S., Jungwirth, K., Krasa, J., Krousky, E., Parys, P., Pfeifer, M., Rohlena, K., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J. & Wolowski, J. (2007). Factor influencing parameters of laser ion sources. Laser Part. Beams 25, 199205.CrossRefGoogle Scholar
Liu, M., Guo, H., Zhou, B., Li, W., Li, B. & Wu, G. (2004). Effects of relativistic and channel focusing on an intense laser beam propagating in a plasma channel: variational analysis. Phys. Lett. A 333, 478484.CrossRefGoogle Scholar
Lugiato, L.A. & Narducci, L.M. (1985). Single-mode and multimode instabilities in lasers and related optical systems. Phys. Rev. A 32, 15761587.CrossRefGoogle ScholarPubMed
Matuszewski, M., Trippenbach, M., Malomed, B.A., Infeld, E. & Skorupski, A.A. (2004). Two-dimensional dispersion-managed light bullets in Kerr media. Phys. Rev. E 70, 016603/1–6.CrossRefGoogle ScholarPubMed
Monot, P., Auguste, T., Gibbon, P., Jakober, F., Mainfray, G., Dulieu, A., Louis-Jacquet, M., Malka, G. & Miquel, J.L. (1995). Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 29532956.CrossRefGoogle Scholar
Panwar, A. & Sharma, A.K. (2009). Self-phase modulation of a laser in self created plasma channel. Laser Part. Beams 27, 249253.CrossRefGoogle Scholar
Regan, S.P., Bradley, D.K., Chirokikh, A.V., Craxton, R.S., Meyerhofer, D.D., Seka, W., Short, R.W., Simon, A., Town, R.P.J. & Yaakobi, B. (1999). Laser-plasma interactions in long-scale-length plasmas under direct-drive National Ignition Facility conditions. Phys. Plasmas 6, 20722080.CrossRefGoogle Scholar
Saini, N.P. & Gill, T.S. (2006). Self-focusing and self-phase modulation of an elliptic Gaussian laser beam in collisionless magnetoplasma. Laser Part. Beams 24, 447453.CrossRefGoogle Scholar
Sarkisov, G.S., Bychenkov, V.Yu., Novikov, V.N., Tikhonchuk, V.T., Maksimchuk, A., Chen, S.-Y., Wagner, R., Mourou, G. & Umstadter, D. (1999). Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a He jet. Phys. Rev. E 59, 70427054.CrossRefGoogle ScholarPubMed
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Skarka, V. & Aleksic, N.B. (2006). Stability criterion for dissipative soliton solutions of one-, two-, and three dimensional complex cubic quintic Ginzburg-Landau equations. Phys. Rev. Lett. 96, 013903/1–4.CrossRefGoogle ScholarPubMed
Skarka, V., Berezhiani, V.I. & Miklaszewski, R. (1997). Spatiotemporal soliton propagation in saturating nonlinear optical media. Phys. Rev. E 56, 10801087.CrossRefGoogle Scholar
Skarka, V., Berezhiani, V.I. & Miklaszewski, R. (1999). Generation of light spatiotemporal solitons from asymmetric pulses in saturating nonlinear media. Phys. Rev. E 59, 12701273.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self-Focusing of Laser Beams in Dielectric Plasma and Semi Conductors. New York: Tata McGraw-Hill.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self-focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 171265.Google Scholar
Sprangle, P., Hafizi, B. & Penano, J.R. (2000). Laser pulse modulation instabilities in plasma channels. Phys. Rev. E 61, 43814393.CrossRefGoogle ScholarPubMed
Stoehlker, T., Backe, H., Beyer, H., Bosch, F., Braeuning-Demian, A., Hagman, S., Ionescu, D., Jungmann, K., Kluge, H.-J., Kozhuharov, C., Kuehl, Th., Lisen, D., Mann, R., Mokler, P. & Quint, W. (2003). Status and perspectives of atomic physics research at GSI: The new GSI accelerator project. Nucl. Instr. Meth. B 205, 156.CrossRefGoogle Scholar
Strangio, C., Caruso, A., Neely, D., Andreoli, P.L., Anzalone, R., Clarke, R., Cristofari, G., DelPrete, E., Di Giorgio, G., Murphy, C., Ricci, C., Stevens, R. & Tolley, M. (2007). Production of multi-Mev per nucleon ions in the controlled amount of matter mode (CAM) by using casually isolated targets. Laser Part. Beams 25, 8591.CrossRefGoogle Scholar
Subbarao, D., Uma, R. & Singh, H. (1998). Paraxial theory of self-focusing of cylindrical laser beams. I. ABCD laws. Phys. Plasmas 5, 34403450.CrossRefGoogle Scholar
Suckewer, S. & Skinner, C.H. (1990). Soft X-ray lasers and their applications. Sci. 247, 1553.CrossRefGoogle ScholarPubMed
Suckewer, S. & Skinner, C.H. (1995). Comments. At. Mol. Phys. 30, 331.Google Scholar
Sun, G.Z., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526532.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J. & Ryc, L. (2008). Self-focusing effects in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams 26, 379387.CrossRefGoogle Scholar
Tzeng, K.C. & Mori, W.B. (1998). Suppression of electron ponderomotive blowout and relativistic self-focusing by the occurence of Raman scattering and plasma heating. Phys. Rev. Lett. 81, 104107.CrossRefGoogle Scholar
Wagner, R., Chen, S.Y., Maksimuchuk, A. & Umstadter, D. (1997). Electron acceleration by a laser wakefield in a relativistically self-guided channel. Phys. Rev. Lett. 78, 31253128.CrossRefGoogle Scholar
Wang, N.Q. (1990). Chaotic behaviour in an electron-beam plasma. Phys. Lett. A 145, 2932.CrossRefGoogle Scholar
Yu, C., Wei, Y., Chun, W.H., Han, X. & Wei, T.Y. (2007). Intense laser beam guiding in self-induced electron cavitation channel in underdense plasmas. Chin. Phys. Soc. 16, 456462.CrossRefGoogle Scholar
Yu, W., Yu, M.Y., Zhang, J. & Xu, Z. (1998). Harmonic generation by relativistic electrons during irradiance of a solid target by a short-pulse ultraintense laser. Phys. Rev. E 57, 25312534.CrossRefGoogle Scholar