Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T17:51:02.941Z Has data issue: false hasContentIssue false

Reduced multi-scale kinetic models for the relativistic electron transport in solid targets: Effects related to secondary electrons

Published online by Cambridge University Press:  14 April 2010

R. Duclous*
Affiliation:
Centre Lasers Intenses et Applications, Université Bordeaux 1 - CEA - CNRS, Talence Cedex, France
J.-P. Morreeuw
Affiliation:
CEA-CESTA, Le Barp, France
V.T. Tikhonchuk
Affiliation:
Centre Lasers Intenses et Applications, Université Bordeaux 1 - CEA - CNRS, Talence Cedex, France
B. Dubroca
Affiliation:
Centre Lasers Intenses et Applications, Université Bordeaux 1 - CEA - CNRS, Talence Cedex, France
*
Address correspondence and reprint requests to: R. Duclous, Centre Lasers Intenses et Applications, Université Bordeaux 1 - CEA - CNRS, 33405 Talence Cedex, France. E-mail: [email protected]

Abstract

A reduced mathematical model for the transport of high current relativistic electron beams in a dense collisional plasma is developed. Based on the hypothesis that the density of relativistic electrons is much less than the plasma density and their energy is much higher than the plasma temperature, a model with two energy scales is proposed, where the beam and plasma electrons are considered as two coupled sub-systems, which exchange the energy and particles due to collisions. The process of energy exchange is described in the Fokker-Planck approximation, where the pitch angle electron-ion and electron-electron collisions dominate. The process of particle exchange between populations, leading to the production of secondary energetic electrons, is described with a Boltzmann term. The electron-electron collisions with small impact parameters make an important contribution in the overall dynamics of the beam electrons.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexandre, R. & Villani, C. (2002). On the Boltzmann equation for long-range interactions. Comm. Pure Appl. Math. 55, 3070.CrossRefGoogle Scholar
Beliaev, S.T. & Budker, G.I. (1956). Relativistic kinetic equation. Dokl. Akad. Nauk SSSR 107, 807.Google Scholar
Bell, A.R., Davies, J.R., Guerin, S. & Ruhl, H. (1997). Fast-electron transport in high-intensity short-pulse laser-solid experiments. Plasma Phys. Contr. Fusion 39, 653.CrossRefGoogle Scholar
Bell, A.R., Robinson, A.P.L., Sherlock, M., Kingham, R.J. & Rozmus, W. (2006). Fast electron transport in laser-produced plasmas and the KALOS code for solution of the Vlasov-Fokker-Planck equation. Plasma Phys. Contr. Fusion 48, R37.CrossRefGoogle Scholar
Berthon, C., Charrier, P. & Dubroca, B. (2007). An HLLC scheme to solve the M1 model of radiative transfer in two space dimensions. J. Sci. Comp. 31, 3.CrossRefGoogle Scholar
Blanchot, N., Bignon, E., Coïc, H., Cotel, A., Couturier, E., Deschaseaux, G. & Forget, N. (2006). Multi-petawatt high-energy laser project on the LIL facility in aquitaine, topical problems of nonlinear wave physics. Proc. SPIE 5975, 59750C.CrossRefGoogle Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., illi, O., Galimberti, M., Gizzi, L.A., Mackinnon, A.J., Snavely, R.D., Patel, P., Hatchett, S., Key, M. & Nazarov, W. (2002). Propagation issues and energetic particle production in laser-plasma interactions at intensities exceeding 1019Wcm−2. Laser Part. Beams 20, 3138.CrossRefGoogle Scholar
Braams, B.J. & Karney, C.F.F. (1987). Differential form of the collision integral for a relativistic plasma. Phys. Rev. Lett. 59, 16.CrossRefGoogle ScholarPubMed
Brantov, A., Rozmus, W., Sydora, R., Capjack, C.E., Bychenkov, V.Yu. & Tikhonchuk, V.T. (2003). Enhanced inverse bremsstrahlung heating rates in a strong laser field. Phys. Plasma 10, 3385.CrossRefGoogle Scholar
Cohen-Tannoudji, C., Diu, B. & Lalöe, F. (1986). Mécanique quantique II, Complément CV III, p. 946. Paris: Hermann.Google Scholar
Cook, R.C., Kozioziemski, B.J., Nikroo, A., Wilkens, H.L., Bhandarkar, S., Forsman, A.C., Haan, S.W.Hoppe, M.L., Huang, H., Mapoles, E., Moody, J.D., Sater, J.D., Seugling, R.M., Stephen R.B., Takagi, M. & Xu, H.W. (2008). National Ignition Facility target design and fabrication. Laser Part. Beams 26, 479487.CrossRefGoogle Scholar
Danson, C. N. et al. , (2005). Vulcan petawatt: Design, operation and interactions at 5X10(20) Wcm(-2). Laser Part. Beams 23, 8793.CrossRefGoogle Scholar
Davies, J.R., Bell, A.R., Haines, M.G. & Guerin, S.M. (1997). Short-pulse high-intensity laser-generated fast electron transport into thick solid targets. Phys. Rev. E 56, 7193.CrossRefGoogle Scholar
Davies, J.R. (2003). Electric and magnetic field generation and target heating by laser-generated fast electrons. Phys. Rev. E 68, 056404.CrossRefGoogle ScholarPubMed
De Groot, S.R., Van Leeuwen, W.A. & Van Weert, C.G. (1980). Relativistic Kinetic Theory. Amsterdam: North Holland.Google Scholar
Delettrez, J.A., Myatt, J., Radha, P.B., Stoeckl, C., Skupsky, S. & Meyerhofer, D.D. (2005). Hydrodynamic simulations of integrated experiments planned for the OMEGA/OMEGA EP laser systems. Plasma Phys. Contr. Fusion 47, B791.CrossRefGoogle Scholar
Dubroca, B. & Feugeas, J.-L. (1998). Hiérarchie de Modèles aux Moments pour le Transfert Radiatif (Hierarchy of moment models for the radiative transfer). C. R. Acad. Sci. 329, 915920.Google Scholar
Duclous, R., Dubroca, B. & Frank, M. (2010). Deterministic partial differential equation model for dose calculation in electron radiotherapy. Phys. Med. Bio. (In press).CrossRefGoogle ScholarPubMed
Eriksson, L.-G. & Helander, P. (2003). Simulation of runaway electrons during tokamak disruptions. Comp. Phys. comm. 154, 175.CrossRefGoogle Scholar
Eriksson, L.-G., Helander, P., Andersson, F., Anderson, D. & Lisak, M. (2004). Current dynamics during disruptions in large tokamaks. Phys. Rev. Lett. 92, 20.CrossRefGoogle ScholarPubMed
Glezos, N. & Raptis, I. (1996). A fast electron beam lithography simulator based on the Boltzmann transport equation, Computer-Aided Design of Integrated Circuits and Systems. IEEE Trans. 15, 92102.Google Scholar
Gremillet, L., Bonnaud, G. & Amiranoff, F. (2002). Filamented transport of laser-generated relativistic electrons penetrating a solid target. Phys. Plasmas 9, 941.CrossRefGoogle Scholar
Gurevich, A.V., Zybin, K.P. & Roussel-Dupré, R. (1998). Kinetic equation for high energy electrons in gases. Phys. Lett. A 237, 240.CrossRefGoogle Scholar
Gurevich, A.V., Lukyanov, A.V., Zybin, K.P. & Roussel-Dupré, R. (1998). Spherical symmetrical approach to the theory of runaway breakdown. In Electron Kinetics and Application of Glow Discharges, Kortshagen, U. and Tsendin, L.D. (eds.). Plenum Press, New York.Google Scholar
Gurevich, A.V. & Zybin, K.P. (2001). Runaway breakdown and electric discharges in thunderstorms, Reviews of Topical Problems. Phys. Uspekhi 44, 1119.CrossRefGoogle Scholar
Holmlid, L., Hora, H., Miley, G. & Yang, X. (2009). Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets. Laser Part. Beams 27, 529532.CrossRefGoogle Scholar
Honrubia, J.J., Antonicci, A. & Moreno, D. (2004). Hybrid simulations of fast electron transport in conducting media. Laser Part. Beams 22, 129.CrossRefGoogle Scholar
Honrubia, J.J., Kaluza, M., Schreiber, J., Tsakiris, G.D. & Meyer-ter-Vehn, J. (2005). Laser driven fast electron transport in preheated foil targets. Phys. Plasmas 12, 052708.CrossRefGoogle Scholar
Karney, C.F.F. & Fisch, N.J. (1985). Efficiency of current drive by fast waves. Phys. Fluids 28, 1.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. (1973). Relativistic Quantum Mechanics. New York: Pergamon.Google Scholar
Lefebvre, E., Cochet, N., Fritzler, S., Malka, V., Aléonard, M.-M., Chemin, J.-F., Darbon, S., Disdier, L., Faure, J., Fedotoff, A., Landoas, O., Malka, G., Méot, V., Morel, P., Rabec, L.E.Gloahec, M., Rouyer, A., Rubbelynck, C.H., Tikhonchuk, V., Wrobel, R., Audebert, P. & Rousseaux, C. (1996). Electron and photon production from relativistic laser-plasma interactions. Nucl. Fusion 43, 629633.CrossRefGoogle Scholar
Levermore, D. (1996). Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 10211065.CrossRefGoogle Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Minerbo, G.N. (1978). Maximum entropy Eddington factors. J. Quant. Spectrosc. Radiat. Trans. 20, 541.CrossRefGoogle Scholar
Miyanaga, N., Azechi, H., Tanaka, K.A., Kanabe, T., Jitsuno, T., Fujimoto, Y., Kodama, R., Shiraga, H., Kondo, K., Tsubakimoto, K., Kitagawa, Y., Fujita, H., Sakabe, S., Yoshida, H., Mima, K., Yamanaka, T. & Izawa, Y. (2003). Inertial Fusion Sciences and Applications. New York: American Nuclear Society.Google Scholar
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.-J., Kuel, T., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser Part. Beams 23, 385389.CrossRefGoogle Scholar
Robiche, J. & Rax, J.M. (2004). Relativistic kinetic theory of pitch angle scattering, slowing down, and energy deposition in a plasma. Phys. Rev. E 70, 046405.CrossRefGoogle ScholarPubMed
Robinson, A.P.L., Kingham, R.J., Ridgers, C.P. & Sherlock, M. (2008). Effect of transverse density modulations on fast electron transport in dense plasma. Plasma Phys. Contr. Fusion 50, 065919.CrossRefGoogle Scholar
Sentoku, Y. & Kemp, A. (2008). Numerical methods for particle simulations at extreme densities and temperatures: weighted particles, relativistic collisions and reduced currents. J. Comput. Phys. 227, 6846.CrossRefGoogle Scholar
Sherlock, M., Bell, A.R., Kingham, R.J., Robinson, A.P.L. & Bingham, R. (2007). Non-Spitzer return currents in intense laser-plasma interactions. Phys. Plasmas 14, 102708.CrossRefGoogle Scholar
Shoub, E.C. (1987). Failure of the Fokker-Planck approximation to the Boltzmann integral for (1/r) potentials. Phys. Fluids 30, 5.CrossRefGoogle Scholar
Stewart, J.M. (1971). Non-Equilibrium Relativistic Kinetic theory. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Symbalisty, E.M.D., Roussel, , Dupré, R.A. & Yukhimuk, V.A. (1998). Finite volume solution of the relativistic Boltzmann equation for electron avalanche studies. IEEE Trans. Plasma Sci. 26, 5.CrossRefGoogle Scholar
Synge, J.L. (1957). The Relativistic Gas. Amsterdam: North-Holland.Google Scholar
Turpault, R. (2002). Construction of a multigroup M1 model for the radiative transfer equations. Comptes Rendus Math. 334, 331336.CrossRefGoogle Scholar