Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T20:37:51.611Z Has data issue: false hasContentIssue false

Radiochromic film spectroscopy of laser-accelerated proton beams using the FLUKA code and dosimetry traceable to primary standards

Published online by Cambridge University Press:  08 April 2011

D. Kirby*
Affiliation:
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
S. Green
Affiliation:
Dept of Medical Physics, University Hospital Birmingham NHS Trust, Birmingham, United Kingdom
F. Fiorini
Affiliation:
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
D. Parker
Affiliation:
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
L. Romagnani
Affiliation:
Centre for Plasma Physics, The Queen's University of Belfast, Belfast, United Kingdom LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Palaiseau, France
D. Doria
Affiliation:
Centre for Plasma Physics, The Queen's University of Belfast, Belfast, United Kingdom
S. Kar
Affiliation:
Centre for Plasma Physics, The Queen's University of Belfast, Belfast, United Kingdom
C. Lewis
Affiliation:
Centre for Plasma Physics, The Queen's University of Belfast, Belfast, United Kingdom
M. Borghesi
Affiliation:
Centre for Plasma Physics, The Queen's University of Belfast, Belfast, United Kingdom
H. Palmans
Affiliation:
National Physical Laboratory, Acoustics and Ionizing Radiation, Teddington, United Kingdom
*
Address correspondence and reprint requests to: Daniel Kirby, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom. E-mail: [email protected]

Abstract

A new approach to spectroscopy of laser induced proton beams using radiochromic film (RCF) is presented. This approach allows primary standards of absorbed dose-to-water as used in radiotherapy to be transferred to the calibration of GafChromic HD-810 and EBT in a 29 MeV proton beam from the Birmingham cyclotron. These films were then irradiated in a common stack configuration using the TARANIS Nd:Glass multi-terawatt laser at Queens University Belfast, which can accelerate protons to 10–12 MeV, and a depth-dose curve was measured from a collimated beam. Previous work characterizing the relative effectiveness (RE) of GafChromic film as a function of energy was implemented into Monte Carlo depth-dose curves using FLUKA. A Bragg peak (BP) “library” for proton energies 0–15 MeV was generated, both with and without the RE function. These depth-response curves were iteratively summed in a FORTRAN routine to solve for the measured RCF depth-dose using a simple direct search algorithm. By comparing resultant spectra with both BP libraries, it was found that the effect of including the RE function accounted for an increase in the total number of protons by about 50%. To account for the energy loss due to a 20 µm aluminum filter in front of the film stack, FLUKA was used to create a matrix containing the energy loss transformations for each individual energy bin. Multiplication by the pseudo-inverse of this matrix resulted in “up-shifting” protons to higher energies. Applying this correction to two laser shots gave further increases in the total number of protons, N of 31% and 56%. Failure to consider the relative response of RCF to lower proton energies and neglecting energy losses in a stack filter foil can potentially lead to significant underestimates of the total number of protons in RCF spectroscopy of the low energy protons produced by laser ablation of thin targets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J., Jabłoński, S., Parys, P., Szydłowski, A., Fuchs, J. & Mancic, A. (2010). Production of high-intensity proton fluxes by a 2ω Nd:glass laser beam. Laser Part. Beams 28, 575583.CrossRefGoogle Scholar
Battistoni, G., Muraro, S., Sala, P.R., Cerutti, F., Ferrari, A., Roesler, S., Fasso, A. & Ranft, J. (2007). The FLUKA code: Description and benchmarking. Proceedings of the Hadronic Shower Simulation Workshop 2006, 3149.Google Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., Mackinnon, A.J., Hicks, D., Patel, P., Gizzi, L.A., Galimberti, M. & Clarke, R.J. (2002). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275.CrossRefGoogle Scholar
Borghesi, M., Mackinnon, A.J., Campbell, D.H., Hicks, D.G., Kar, S., Patel, P.K., Price, D., Romagnani, L., Schiavi, A. & Willi, O. (2004). Multi-MeV Proton Source Investigations in Ultraintense Laser-Foil Interactions. Phys. Rev. Lett. 92, 055003.CrossRefGoogle ScholarPubMed
Breschi, E., Borghesi, M., Galimberti, M., Giulietti, D., Gizzi, L.A. & Romagnani, L. (2004). A new algorithm for spectral and spatial reconstruction of proton beams from dosimetric measurements. Nucl. Instr. Meth. Phys. Res. A 522, 190195.Google Scholar
Bulanov, S. & Khoroshkov, V. (2002). Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rpts 28, 453456.Google Scholar
Butson, M.J., Yu, P.K.N., Cheung, T. & Metcalfe, P. (2003). Radiochromic film for medical radiation dosimetry. Mater. Sci. Engin. R 41, 61120.CrossRefGoogle Scholar
Clark, E.L., Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2000). Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 1654.Google Scholar
Clarke, R.J., Simpson, P.T., Kar, S., Green, J.S., Bellei, C., Carroll, D.C., Dromey, B., Kneip, S., Markey, K., McKenna, P., Murphy, W., Nagel, S., Willingale, L. & Zepf, M. (2008). Nuclear activation as a high dynamic range diagnostic of laser-plasma interactions. Nucl. Instr. Meth. Phys. Res. A 585, 117120.Google Scholar
Dzelzainis, T., Nersisyan, G., Riley, D., Romagnani, L., Ahmed, H., Bigongiari, A., Borghesi, M., Doria, D., Dromey, B., Makita, M., White, S., Kar, S., Marlow, D., Ramakrishna, B., Sarri, G., Zaka-Ul-Islam, M., Zepf, M. & Lewis, C.L.S. (2010). The TARANIS laser: A multi-Terawatt system for laser-plasma investigations. Laser Part. Beams 28, 451461.CrossRefGoogle Scholar
Ferrari, A., Sala, P.R., Fasso, A. & Ranft, J. (2005). FLUKA: A Multi-Particle Transport Code. Report No. CERN 2005-10, INFN/TC_05/11, SLAC-R-773. Geneva: CERN.CrossRefGoogle Scholar
Ferreira, B.C., Lopes, M.C. & Capela, M. (2009). Evaluation of an Epson flatbed scanner to read Gafchromic EBT films for radiation dosimetry. Phys. Med. Biol. 54, 10731085.Google Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.CrossRefGoogle Scholar
Hey, D.S., Key, M.H., Mackinnon, A.J., MacPhee, A.G., Patel, P.K., Freeman, R.R., Van Woerkom, L.D. & Castaneda, C.M. (2008). Use of GafChromic film to diagnose laser generated proton beams. Rev. Sci. Instr. 79, 4.Google Scholar
IAEA. (2000). Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based On Standards of Absorbed Dose to Water. Report No. TRS-398. Vienna: International Atomic Energy Agency.Google Scholar
Kirby, D., Green, S., Palmans, H., Hugtenburg, R., Wojnecki, C. & Parker, D. (2010). LET dependence of GafChromic films and an ion chamber in low-energy proton dosimetry. Phys. Med. Biol. 55, 417433.Google Scholar
Klassen, N.V., van der Zwan, L. & Cygler, J. (1997). GafChromic MD-55: Investigated as a precision dosimeter. Med. Phys. 24, 19241934.Google Scholar
Lynch, B.D., Kozelka, J., Ranade, M.K., Li, J.G., Simon, W.E. & Dempsey, J.F. (2006). Important considerations for radiochromic film dosimetry with flatbed CCD scanners and EBT GAFCHROMIC film. Med. Phys. 33, 45514556.Google Scholar
Nürnberg, F., Schollmeier, M., Brambrink, E., Blazevic, A., Carroll, D.C., Flippo, K., Gautier, D.C., Geissel, M., Harres, K., Hegelich, B.M., Lundh, O., Markey, K., McKenna, P., Neely, D., Schreiber, J. & Roth, M. (2009). Radiochromic film imaging spectroscopy of laser-accelerated proton beams. Rev. Sci. Instr. 80, 033301033313.Google Scholar
Paelinck, L., Neve, W.D. & Wagter, C.D. (2007). Precautions and strategies in using a commercial flatbed scanner for radiochromic film dosimetry. Phys. Med. Biol. 52, 231242.Google Scholar
Palmans, H., Thomas, R. & Kacperek, A. (2006). Ion recombination correction in the Clatterbridge Centre of Oncology clinical proton beam. Phys. Med. Biol. 51, 903917.Google Scholar
Pegoraro, F., Atzeni, S., Borghesi, M., Bulanov, S., Esirkepov, T., Honrubia, J., Kato, Y., Khoroshkov, V., Nishihara, K., Tajima, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high-power laser-plasma interactions and their applications. Laser Part. Beams 22, 1924.Google Scholar
Piermattei, A., Miceli, R., Azario, L., Fidanzio, A., Canne, S.d., De Angelis, C., Onori, S., Pacilio, M., Petetti, E., Raffaele, L. & Sabini, M.G. (2000). Radiochromic film dosimetry of a low energy proton beam. Med. Phys. 27, 16551660.Google Scholar
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., McCanny, T., Mora, P., Neely, D., Wahlstrom, C.G., Zepf, M. & McKenna, P. (2007). Scaling of proton acceleration driven by petawatt-laser-plasma interactions. Nat Phys 3, 5862.CrossRefGoogle Scholar
Schollmeier, M., Harres, K., Nürnberg, F., Blazevic, A., Audebert, P., Brambrink, E., Fernandez, J.C., Flippo, K.A., Gautier, D.C., Geissel, M., Hegelich, B.M., Schreiber, J. & Roth, M. (2008). Laser beam-profile impression and target thickness impact on laser-accelerated protons. Phys. Plasmas 15, 12.CrossRefGoogle Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.CrossRefGoogle ScholarPubMed
Vatnitsky, S.M. (1997). Radiochromic film dosimetry for clinical proton beams. Appl. Radiat. Isot. 48, 643651.CrossRefGoogle ScholarPubMed
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.CrossRefGoogle Scholar
Ziegler, J.F. (2004). SRIM-2003. Nucl. Instr. Meth. Phys. Res. 219-220, 10271036.CrossRefGoogle Scholar