Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T05:46:29.805Z Has data issue: false hasContentIssue false

Radiation loss from inertially confined degenerate plasmas

Published online by Cambridge University Press:  25 March 2004

SHALOM ELIEZER
Affiliation:
Soreq Nuclear Research Center, Yavne, Israel
PABLO T. LEÓN
Affiliation:
Institute of Nuclear Fusion, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Spain
JOSÉ M. MARTINEZ-VAL
Affiliation:
Institute of Nuclear Fusion, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Spain
DIMITRI V. FISHER
Affiliation:
Soreq Nuclear Research Center, Yavne, Israel

Abstract

Bremsstrahlung is one of the most important energy loss mechanisms in achieving ignition, which is only possible above a threshold in temperature for a given fusion reaction and plasma conditions. A detailed analysis of the bremsstrahlung process in degenerate plasma points out that radiation energy loss is much smaller than the value given by the classical formulation. This fact seems not useful to relax ignition requirements in self-ignited targets, because it is only relevant at extremely high densities. On the contrary, it can be very positive in the fast ignition scheme, where the target is compressed to very high densities at a minimum temperature, before the igniting beamlet is sent in.

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. (1995). Thermonuclear burn performance of volume-ignited and centrally ignited bare deuterium-tritium microspheres. Japan J. Appl. Phys. 43, 19801992.Google Scholar
Atzeni, S. (2002). Proc. Inertial Fusion Science and Applications 2001 (Tanaka, K.A., Meyerhofer, D.D. & Meyer-ter-Vehn, J., Eds.), p. 45. Paris: Elsevier.
Azechi, H., Jitsuno, T., Kanabe, T., Katayama, M., Mirna, K., Miyanaga, N., Nakai, M., Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norrays, P.A., Setsuhara, Y., Takagi, M., Yamanaka, M. & Yamanaka, C. (1991). High-density compression experiments at ILE. Laser Part. Beams 9, 193207.Google Scholar
Bodner, S.E. (1981). Critical elements of high gain laser fusion. Fusion Energy 1, 221.Google Scholar
Boreham, B.W., Eliezer, S., Martinez-Val, J.M. et al. (1999). Beam matter interaction physics for fast ignitors. Fusion Eng. Des. 44, 215224.Google Scholar
Brueckner, K.A. & Jorna, S. (1973). Laser-driven fusion. Rev. Mod. Phys. 46, 325367.Google Scholar
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 413422.Google Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1997). Interaction physics of the fast ignitor concept. Laser Part. Beams 15, 557564.Google Scholar
Eliezer, S., Ghatak, A. & Hora, H. (1986). An Introduction to Equations of State: Theory and Applications. Cambridge, UK: Cambridge University Press.
Eliezer, S. & Martinez-Val, J.M. (1998). Proton-boron-11 fusion reactions induced by heat-detonation burning waves. Laser Part. Beams 16, 581598.Google Scholar
Kato, Y., Kitagawa, Y., Tanaka, K.A., Kodama, R., Fujita, H., Kanabe, T., Jitsuno, T., Shiraga, H., Takabe, H., Murakami, M., Nishihara, K. & Mima, K. (1997). Plasma Phys. Control Fusion 39, A145A151.
Key, M.H. (2001). Fast track to fusion energy. Nature 412, 775776.Google Scholar
Kidder, R.E. (1974). Theory of homogeneous isentropic compression and its application to laser fusion. Nucl. Fusion 14, 5360.Google Scholar
Kidder, R.E. (1979). Laser-driven isentropic hollow-shell implosions: The problem of ignition. Nucl. Fusion 19, 223234.Google Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G. et al. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798802.Google Scholar
Leon, P.T., Eliezer, S., Martinez-Val, J.M. & Piera, M. (2001). Fusion burning waves in degenerate plasmas. Phys. Lett. A 289, 135140.Google Scholar
Martinez-Val, J.M., Eliezer, S. & Piera, M. (1994). Volume ignition targets for heavy-ion inertial fusion. Laser Part. Beams 12, 681717.Google Scholar
Maynard, G. & Deutsch, C. (1982). Energy loss and straggling of ions with any velocity in dense plasmas at any temperature. Phys. Rev. A 26, 665668.Google Scholar
McCrory, R.L., Soures, J.M., Verdon, C.P., Marshall, F.J., Letzring, S.A., Skupsky, S., Kessler, T.J., Kremens, R.L., Knauer, J.P., Kim, H. Delettrez, J., Keck, R.L., &Bradley, D.K. (1988). Laser-driven implosion of thermonuclear fuel to 20 to 40 g cm−3m. Nature 335, 225229.Google Scholar
Meyer-ter-Vehn, J. (1982). On energy gain of fusion targets: The model of Kidder and Bodner improved. Nucl. Fusion 22, 561565.Google Scholar
Miyamoto, K. (1980). Plasma Physics for Nuclear Fusion. Cambridge, MA: The MIT Press.
More, R.M. (1993). Nuclear Fusion by Inertial Confinement. Atomic Physics in Dense Plasma (Verlade, G., Ronen, Y. & Martìnez-Val, J.M., Eds.), Boca Raton, FL: CRC Press.
Nakai, S. et al. (1991). Plasma Physics and Controlled Nuclear Fusion Research 1990, IAEA/CN-53/B-1-3, IAEA, Vienna.
Norreys, P.A., Allott, R., Clarke, R.J., Collier, J., Neely, D., Rose, S.J., Zepf, M., Santala, M., Bell, A.R., Krushelnick, K., Dangor, A.E., Woolsey, N.C., Evans, R.G., Habara, H., Norimatsu, T. & Kodama, R. (2000). Experimental studies of the advanced fast ignitor scheme. Phys. Plasmas 7, 37213726.Google Scholar
Piriz, A.R. & Sanchez, M.M. (1998). Analytic model for the dynamics of fast ignition. Phys. Plasmas 5, 27212726.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W. Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D., &Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.Google Scholar
Skupsky, S. (1977). Energy loss of ions moving through high-density matter. Phys. Rev. A 16, 727731.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Tahir, N.A. & Hoffmann, D.H.H. (1994). Development of high gain reduced tritium targets for inertial fusion. Fusion Eng. Des. 24, 413418.Google Scholar
Totsuji, H. (1985). Bremsstrahlung in high-density plasmas. Phys. Rev. A 32, 30053010.Google Scholar
Yaakobi, B., Smalyuk, V.A., Delettrez, J.A., Town, R.P.J., Marshall, F.J., Glebov, V.Yu., Petrasso, R.D., Soures, J.M., Meyerhofer, D.D. & Seka, W. (1999). Spherical implosion experiments on OMEGA: Measurements of the cold, compressed shell. Proc. IFSA 99 Conference, pp. 115121. Labaune, C., Hogan, W. & Tanaka, K.A. (Eds.) Paris: Elsevier.
Yamanaka, C. et al. (1986). Laser implosion of high-aspect-ratio targets produces thermonuclear neutron yields exceeding 1012 by use of shock multiplexing. Phys. Rev. Lett. 56, 15751578.Google Scholar
Yamanaka, C. & Nakai, S. (1986). Thermonuclear neutron yield to 1012 achieved with Gekko XII green laser. Nature 319, 757759.Google Scholar
Yamanaka, C. et al. (1987). High thermonuclear neutron yields by shock multiplexing implosion with Gekko XII green laser. Nucl. Fusion 27, 1930.Google Scholar