Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T21:06:02.023Z Has data issue: false hasContentIssue false

Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N2 and He gas targets

Published online by Cambridge University Press:  16 June 2008

Z.L. Chen
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
C. Unick
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
N. Vafaei-Najafabadi
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
Y.Y. Tsui
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
R. Fedosejevs*
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
N. Naseri
Affiliation:
Department of Physics, University of Alberta, Edmonton, Alberta, Canada
P.-E. Masson-Laborde
Affiliation:
Department of Physics, University of Alberta, Edmonton, Alberta, Canada
W. Rozmus
Affiliation:
Department of Physics, University of Alberta, Edmonton, Alberta, Canada
*
Address correspondence and reprint requests to: Robert Fedosejevs, Department of Electrical and Computer Engineering, ECERF W2-104, University of Alberta, Edmonton, Alberta, CanadaT6G 2V4. E-mail: [email protected]

Abstract

Quasi-monoenergetic electron beams of energies 12 MeV to over 200 MeV are generated from both nitrogen and helium gas targets with 7TW laser pulses. Typically nitrogen gas interactions lead to electron bunches in the range of 12 to 50 MeV varying from shot to shot. Helium gas leads to higher energy electron bunches from 25 to 100 MeV. Occasionally exceptionally high energy bunches of electrons up to 200 MeV are observed from nitrogen and helium. Initial full two-dimensional simulations indicate the production of 20–30 MeV electron energy bunches for the typical interaction conditions as the electrons are injected from wave breaking in the plasma wake behind the laser pulse and injected into the strong electric field gradient propagating with the optical pulse. This is consistent with the experimental observations from the majority of shots. Pulse compression during propagation in the high density plasma does not allow the threshold conditions for the full bubble regime to be reached. However, the electric acceleration field in the wakefield cavity is still sufficient to lead to the formation of a bunch of electrons with an energy peak in the range of 20 to 30 MeV. In order to explain the occasional high energy shots most likely a lower density channel created by the laser prepulse may occasionally form a natural low density electron guide channel giving ideal conditions for acceleration over much longer lengths leading to the high energies observed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arkhiezer, A.I. & Polovin, R.V. (1956). Theory of wave motion of an electron plasma. Sov. Phys. JETP 3, 696.Google Scholar
Bulanov, S.V., Pegoraro, F., Pukhov, A.M. & Sakharov, A.S. (1997). Transverse-wake wave breaking. Phys. Rev. Lett. 78, 22.Google Scholar
Decker, C.D., Mori, W.B., Tzeng, K.-C. & Katsouleas, T. (1996). The evolution of ultra-intense, short-pulse lasers in underdense plasmas. Phys. Plasmas 3, 2047.Google Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541.Google Scholar
Faure, J., Glinec, Y., Santos, J.J., Ewald, F., Rousseau, J.-P., Kiselev, S., Pukhov, A., Hosokai, T. & Malka, V. (2005). Observation of laser-pulse shortening in nonlinear plasma waves. Phys. Rev. Lett. 95, 205003.Google Scholar
Fedosejevs, R., Wang, X.F. & Tsakiris, G.D. (1997). Onset of relativistic self-focusing in high density gas jet targets. Phys. Rev. E 56, 4615.Google Scholar
Geddes, C.G.R., Toth, CS., Tilborg, J.VAN, Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J., & Leemans, W.P. (2004). High quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538.Google Scholar
Giulietti, A., Tomassini, P., Galimberti, M., Guilietti, D., Gizzi, L.A., Koester, P., Labate, L., Ceccotti, T., D'oliveira, P., Auguste, T., Monot, P. & Martin, P. (2006). Prepulse effect on intense femtosecond laser pulse propagation in gas. Phys. Plasmas 13, 093103.Google Scholar
Giulietti, A., Galimberti, M., Gamucci, A., Guilietti, D., Gizzi, L.A., Koester, P., Labate, L., Tomassini, P., Ceccotti, T., D'oliveira, P., Auguste, T., Monot, P. & Martin, P. (2007). Search for stable propagation of intense femtosecond laser pulses in gas. Laser and Particle Beams 25, 513.Google Scholar
Gordienko, S. & Pukhov, A. (2005). Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 12, 043109.Google Scholar
Hidding, B., Amthor, K.-U., Liesfeld, B., Schwoerer, H., Karsch, S., Geissler, M., Veisz, L., Schmid, K., Gallacher, J.G., Jamison, S.P., Jaroszynski, D., Pretzler, G., & Sauerbrey, R. (2006). Generation of quasimonoenergetic electron bunches with 80-fs laser pulses. Phys. Rev. Lett. 96, 105004.Google Scholar
Hosokai, T., Kinoshita, K., Ohkubo, T., Maekawa, A., Uesaka, M., Zhidkov, A., Yamazaki, A., Kotaki, H., Kando, M., Nakajima, K., Bulanov, S.V., Tomassini, P., Giulietti, A. & Guilietti, D. (2006). Observation of strong correlation between quasimonoenergetic electron beam generation by laser wakefield and laser guiding inside a preplasma cavity. Phys. Rev. E 73, 036407.Google Scholar
Hsieh, C.-T., Huang, C.-M., Chang, C.-L., Ho, Y.-C., Chen, Y.-S., Lin, J.-Y., Wang, J. & Chen, S.-Y. (2006). Tomography of injection and acceleration of monoenergetic electrons in a laser-wakefield accelerator. Phys. Rev. Lett. 96, 095001.Google Scholar
Leemans, W.P., Nagler, B., Gonsalves, A.J., Toth, CS., Nakamura, K., Geddes, C.G., Esarey, R.E., Schroeder, C.B. & Hooker, S.M. (2006). GeV electron beams from a centimeter-scale accelerator. Nature Physics 2, 696.Google Scholar
Li, Y.M. & Fedosejevs, R. (1996). Ionization-induced blue shift of KrF laser pulses in an underdense plasma. Phys. Rev. E 54, 2166.Google Scholar
Lifschitz, A.F., Faure, J., Malka, V. & Mora, P. (2005). GeV wakefield acceleration of low energy electron bunches using petawatt lasers. Phys. Plasmas 12, 093104.Google Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser and Particle Beams 24, 255.Google Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535.Google Scholar
Mori, W.B., Decker, C.D. & Katsouleas, T. (1994). Particle-in-cell simulations of Raman forward scattering from short-pulse high-intensity lasers. Phys. Rev. E 50, R3338.Google Scholar
Ozaki, T., Kieffer, J.-C., Toth, R., Fourmaux, S., & Bandulet, H. (2006). Experimental prospects at the Canadian advanced laser light source facility. Laser and Particle Beams. 24, 101.Google Scholar
Romannov, D.V., Bychenkov, V.YU., Rozmus, W., Capjack, C.E., & Fedosejevs, R. (2004). Self-organization of a plasma due to 3D evolution of the Weibel instability. Phys. Rev. Lett. 93, 215004.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.Google Scholar
Tsung, F.S., Ren, C., Silva, L.O., Mori, W.B. & Katsouleas, T. (2002). Generation of ultra-intense single-cycle laser pulses by using photo deceleration. Proc. Natl. Acad. Sci. U.S.A 99, 29.Google Scholar
Tsung, F.S., Lu, W., Tzoufrsa, M., Mori, W.B., Joshi, C., Vieira, J.M., Silva, L.O. & Fonseca, R.A. (2006). Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25 TW lasers. Phys. Plasmas 13, 056708.Google Scholar
Wilks, S.C., Dawson, J.M., Mori, W.B., Katsouleas, T. & Jones, M.E. (1989). Photon accelerator. Phys. Rev. Lett. 62, 2600.Google Scholar