Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T05:07:27.650Z Has data issue: false hasContentIssue false

Proton stopping in thin aluminum slabs

Published online by Cambridge University Press:  09 March 2009

B. P. Goel
Affiliation:
Kernforschunszentrum Karlsruhe, Karlsruhe, West Germany
G. A. Moses
Affiliation:
Fusion Technology Institute, University of Wisconsin, Madison, WI 53706-1687
R. R. Peterson
Affiliation:
Fusion Technology Institute, University of Wisconsin, Madison, WI 53706-1687

Abstract

Numerical simulations of proton stopping lengths in aluminum slab plasmas have been done using a modified version of the MEDUSA-KA code and compared to other published computations. Simulations have been performed for proton beam parameters consistent with future experiments on the KALIF light ion accelerator at KfK including carbon contamination of the beam. These simulations show that proton range shortening should be evident in KALIF experiments and that the carbon contamination must be removed to allow interpretation of the data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, A. R. 1981 RL-80–91 Rutherford.CrossRefGoogle Scholar
Bennet, B. I. et al. 1978 LA-7130, Los Alamos.Google Scholar
Bethe, H. A. 1930 Ann. d. Physik (Leipzig), 5, 325.CrossRefGoogle Scholar
Beynon, T. D. 1981 Phil. Trans. Roy. Soc. London, A300, 613.Google Scholar
Bluhm, H. et al. 1985 Proc. of 5th IEEE meeting.Pulse Power Conference,Arlington,June 10–12 1985, p. 114.Google Scholar
Christiansen, J. P. et al. 1974 Comp. Phys. Comm. 7, 271.CrossRefGoogle Scholar
Deutsch, C. et al. 1982 in GSI-82–8, p. 543, Darmstadt.Google Scholar
Dobkin, A. V. & Nemchivov, I. V. 1982 Sov. J. Plasma Phys. 8, 54.Google Scholar
Duston, D. et al. 1983 Phys. Rev. A21, 1441.CrossRefGoogle Scholar
Evans, R. G. 1983 Laser and Particle Beams, 1, 231.CrossRefGoogle Scholar
Geiger, W. et al. 1968 Springer Tracts of Modern Physics, 46, 1.Google Scholar
Goel, B. & Höbel, W. 1985 Plasma Physics and Controlled Nuclear Fusion Research, London, 12–19 September 1984, Nuclear Fusion Supplement 1985, Vol. 3, p. 345.Google Scholar
Huebner, W. F. et al. 1977 LA-6760-M, Los Alamos.Google Scholar
Kirzhnits, D. A. 1959 Sov. Phys. JETP, 8, 1981.Google Scholar
Long, K. A. & Tahir, N. A. 1986 Nucl. Fusion, 26, 555.CrossRefGoogle Scholar
Long, K. A. & Tahir, N. A. 1986a Phys. of Fluids, 29, 275.CrossRefGoogle Scholar
Mosher, D. et al. 1977 NRL Report 3658, Naval Research Lab.Google Scholar
Magelssen, G. R. & Moses, G. A. 1979 Nucl. Fus. 19, 301.CrossRefGoogle Scholar
McGuire, E. J. et al. 1982 Phys. Rev. A26, 1318.CrossRefGoogle Scholar
Mehlhorn, T. A. 1981 J. Appl. Phys. 52, 6522.CrossRefGoogle Scholar
Mehlhorn, T. A. et al. 1983 Colloque, 44, C8–39.Google Scholar
Moses, G. A. 1977 Nucl. Sci. Engr. 64, 49.CrossRefGoogle Scholar
Nardi, E. & Zinamon, Z. 1982 Phys. Rev. Lett. 49, 1251.CrossRefGoogle Scholar
Nardi, E. et al. 1978 Phys. Fluids, 21, 574; and Appl. Phys. Lett. 39, 46 (1981).CrossRefGoogle Scholar
Olsen, J. N. et al. 1985 J. Appl. Phys. 58, 2958.CrossRefGoogle Scholar
Rogerson, J. E. et al. 1985 Phys. Rev. A31, 3323.CrossRefGoogle Scholar
Sayasov, Y. S. 1983 Helv. Phys. 57, 72.Google Scholar
Spitzer, L. Jr.Physics of Fully Ionized Gases, 2nd Edition, John Wiley & Sons, New York p. 125.Google Scholar
Tahir, N. A. & Long, K. A. 1983 KfK 3454, Karlsruhe.Google Scholar
Young, F. C. et al. 1982 Phys. Rev. Lett. 49, 549.CrossRefGoogle Scholar
Ziegler, J. F. 1980 Stopping Cross Section for Energetic Ions in All Elements, Vol. 5, Pergamon Press, New York.Google Scholar