Article contents
Physics of dense plasma research at MPQ
Published online by Cambridge University Press: 09 March 2009
Abstract
The main tool for the laser plasma work at MPQ (Max-Planck-Institut für Quantenoptik) is the ASTERIX iodine laser delivering 300 J/300 ps pulses at 1·3 m, operational also at 2ω and 3ω. A fifth 30-cm diameter am lifier is under construction to increase the pulse energy up to 2 kJ.
Soft X-ray radiation emitted by laser plasmas and its influence on energy transport and hydrodynamics is studied. Time and space resolved spectroscopic measurements of soft X-radiation from a variety of targets are compared with analytical models and computer results. Planck radiation is produced in gold cavities to study radiation hydrodynamics. Theoretical work comprises shock waves in solids, the electronic structure of very high density matter, radiation pumped X-ray laser and development of the appropriate computer codes.
Estimates indicate that dense plasmas with temperatures of several ten keV can be produced with the heavy ion accelerator now under construction at GSI-Darmstadt. Experiments are being prepared to be started in 1991. Measurements at the present UNILAC-accelerator confirm the theoretical prediction that the energy loss of heavy ions in a plasma is much higher than in cold matter.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1989
References
- 2
- Cited by