Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T09:27:23.377Z Has data issue: false hasContentIssue false

PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface

Published online by Cambridge University Press:  16 June 2008

A. Kasperczuk
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
T. Pisarczyk*
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
M. Kalal
Affiliation:
Czech Technical University in Prague, FNSPE, Prague, Czech Republic
M. Martinkova
Affiliation:
Czech Technical University in Prague, FNSPE, Prague, Czech Republic
J. Ullschmied
Affiliation:
Institute of Plasma Physics AS CR, Prague, Czech Republic
E. Krousky
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
K. Masek
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
M. Pfeifer
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
K. Rohlena
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
J. Skala
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
P. Pisarczyk
Affiliation:
Warsaw University of Technology, ICS, Warsaw, Poland
*
Address correspondence and reprint requests to: Tadeusz Pisarczyk, Institute of Plasma Physics and Laser Microfusion, 23 Hery Street, 00-908 Warsaw, Poland. E-mail: [email protected]

Abstract

This paper is devoted to investigations of laser energy transfer into solid targets with respect to the focusing lens focal point position relative to the solid target surface as obtained at the PALS laser facility. The third harmonic of the PALS laser beam with energy ~90 J and pulse duration ~250 ps (FWHM) was used for irradiation of two kinds of targets made of Cu: a slab and a 3.6 µm thick foil. The focal point of the beam was located either inside or in front of the target surface, and care was taken to ensure the same laser spot radii in both cases (250 µm). It was demonstrated that these two opposite focal point positions give rise to significantly different laser-plasma interactions: with either depression or maximum of the laser intensity distribution in the center of the beam, respectively. It was also verified that the focal point position inside of the target is favorable for plasma jets creation, whereas the opposite case is more effective for acceleration of flyers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badziak, J., Kasperczuk, A., Parys, P., Rosiński, M., Ryć, L., Pisarczyk, T., Wolowski, J., Jabłoński, S., Suchańska, R., Krousky, E., Masek, K., Pfeifer, M., Ullschmied, J., Dareshwar, L.J., Földes, I., Torrisi, L. & Pisarczyk, P. (2007). Production of high-current heavy ion jets at the short-wavelength subnanosecond laser-solid interaction. App1. Phys. Lett. 91, 081502-1-081502-3.Google Scholar
Batani, D., Balducci, A., Berenta, D., Bernardinello, A., Lower, T. & Hall, T. (2000). Equation of state date for gold in the pressure range <10 Tpa. Phys. Rev. B 61, 92879294.Google Scholar
Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J.Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.Google Scholar
Borodziuk, S., Demchenko, N.N., Gus'kov, S.Yu., Jungwirth, K., Kalal, M., Kasperczuk, A., Kondrashov, V.N., Kralikova, B., Krousky, E., Limpouch, J., Masek, K., Pisarczyk, P., Pisarczyk, T., Pfeifer, M., Rohlena, K., Rozanov, V.B., Skala, J. & Ullschmied, J. (2005). High power laser interaction with single and double layer targets. Opt. Appl. 35, 242262.Google Scholar
Borodziuk, S., Kasperczuk, A., Pisarczyk, T., Gus'kov, S.Yu., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J., Kalal, M., Limpouch, J. & Pisarczyk, P. (2007). Study of the conditions for the effective energy transfer in a process of acceleration and collision of the thin metal disks with the massive target. Euro. Phys. J. D 41, 311317.CrossRefGoogle Scholar
Caruso, A. & Pais, V.A. (1996). The ignition of dense DT fuel by injected triggers. Nucl. Fusions 36, 745757.Google Scholar
Cauble, R., Phillion, D.W., Hoover, T.J., Holmes, N.C., Kilkenny, J.D. & Lee, R.W. (1993). Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils. Phys. Rev. Lett. 70, 21022105.CrossRefGoogle ScholarPubMed
Cottet, F., Hallouin, M., Romain, J.P., Fabro, R., Faral, B. & Pepin, H. (1985). Enhancement of a laser-driven shock wave up to 10 TPa by the impedance-match technique. Appl. Phys. Lett. 47, 678680.CrossRefGoogle Scholar
Desai, T., Dezulian, R. & Batani, D. (2007). Radiation effects on shock propagation in Al target relevant to equation of state measurements. Laser Part. Beams 25, 2330.CrossRefGoogle Scholar
Eliezer, S., Murakami, M. & Val, J.M.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.Google Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.CrossRefGoogle Scholar
Kasperczuk, A., Borodziuk, S., Demchenko, N.N., Gus'kov, S.Yu., Kalal, M., Kondrashov, V.N., Kralikova, B., Krousky, E., Limpouch, J., Masek, K., Pfeifer, M., Pisarczyk, P., Pisarczyk, T., Rohlena, K., Rozanov, V.B., Skala, J. & Ullschmied, J. (2004). Investigation of crater creation efficiency by means of single and double targets in the PALS experiment. ECA 28G, P- 5.067.Google Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Rohlena, K., Skala, J. & Hora, H. (2006). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Plasmas 13, 062704-1/062704-8.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2007 a). The influence of target irradiation conditions on the parameters of laser-produced plasma jets. Phys. Plasmas 14, 032701-1/032701-4.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2007 b). Interferometric investigations of influence of target irradiation on the parameters of laser-produced plasma jets. Laser Part. Beams 25, 425433.Google Scholar
Kasperczuk, A., Pisarczyk, T., Badziak, J., Miklaszewski, R., Parys, P., Rosinski, M., Wolowski, J., Stenz, C.H., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2007 c). Influence of the focal point position on the properties of a laser-produced plasma. Phys. Plasmas 14, 102706-1/102706-8.CrossRefGoogle Scholar
Laska, L., Jungwirth, K., Krasa, J., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Gammino, S., Torrisi, L. & Boody, F.P. (2005). Charge-state and energy enhancement of laser-produced ions due to nonlinear processes in preformed plasma. Appl. Phys. Lett. 86, 081502-1/081502-3.CrossRefGoogle Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Skala, J., Ullschmied, J., Velyhan, A., Kubes, P., Badziak, J., Parys, P., Rosinski, M., Ryc, L. & Wolowski, J. (2006). Experimental studies of interaction of intense long laser pulse with a laser-created Ta plasma. Czech. J. Phys. 56, B506B514.CrossRefGoogle Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Gammino, S., Torrisi, L. & Boody, F.P. (2006). Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions. Laser Part. Beams 24, 175179.CrossRefGoogle Scholar
Limpouch, J., Demchenko, N.N., Gus'kov, S.Yu., Kalal, M., Kasperczuk, A., Kondrashov, V.N., Masek, K., Pisarczyk, P., Pisarczyk, T. & Rozanov, V.B. (2004). Laser interaction with plastic foam–metallic foil layered targets. Plasma Phys. Control. Fusion 46, 18311841.CrossRefGoogle Scholar
Lomonosov, I.V. (2007). Multi-phase equation of state for aluminum. Laser Part. Beams 25, 567584.CrossRefGoogle Scholar
Murakami, M., Nagatomo, H., Sakaiya, T., Azechi, H., Fujioka, S., Shiraga, H., Nakai, M., Shiramori, K., Saito, H., Obenschain, S., Karasik, M., Gardner, J., Bates, J., Colombant, D., Weaver, J. & Aglitskiy, Y. (2005). Towards realization of hyper-velocities for impact fast ignition. Plasma Phys. Contr. Fusion 47, B815–B522.CrossRefGoogle Scholar
Nicolai, P.H., Tikhonchuk, V., Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Rohlena, K. & Ullschmied, J. (2006). Plasma jets produced in a single laser beam interaction with a planar target. Phys. Plasmas 13, 062701-1/062701-8.Google Scholar
Ozaki, N., Sasatani, Y., Kishida, K., Nakano, M., Nagoi, K., Nishihara, K., Norimatsu, T., Tanaka, K.A., Fujimoto, Y., Wakabayashi, K., Hattori, S., Tange, T., Kondo, K., Yoshida, M., Kozu, N., Ishiguchi, M. & Takenaka, H. (2001). Planar shock wave generated by uniform irradiation from two overlapped partially coherent laser beams. J. Appl. Phys. 89, 25712575.CrossRefGoogle Scholar
Pisarczyk, T., Borodziuk, S., Demczenko, N.N., Gus'kov, S.Yu., Kalal, M., Kasperczuk, A., Kondrashov, V.N., Limpouch, J.V., Pisarczyk, P., Rohlena, K., Rozanov, V.B., Skala, J. & Ullschmied, J. (2004). Energy transfer and shock wave generation at the collision of laser-driven macroparticle. 28th European Conference on Laser Interaction with Matter, Roma. p. 465469.Google Scholar
Pisarczyk, T., Kasperczuk, A., Krousky, E., Masek, K., Miklaszewski, R., Nicolai, Ph., Pfeifer, M., Pisarczyk, P., Rohlena, K., Stenz, Ch., Skala, J., Tikhonchuk, V. & Ullschmied, J. (2007). The PALS iodine laser-driven jets. Plasma Phys. Contr. Fusion 49, B611B619.CrossRefGoogle Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E.Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Sizyuk, V., Hassanein, A. & Sizyuk, T. (2007). Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications. Laser Part. Beams 25, 143154.CrossRefGoogle Scholar
Tanaka, K.A., Hara, M., Ozaki, N., Sasatani, Y., Anisimov, S.I., Kondo, K., Nakano, M., Nishihara, K., Takenaka, H., Yoshida, M. & Mima, K. (2000). Multi-layered flyer accelerated by laser induced shock waves. Phys. Plasmas 7, 676680.Google Scholar
Velarde, P., Ogando, F.Eliezer, S., Martinez-Val, J.M., Perlado, J.M. & Murakami, M. (2005). Comparison between jet collision and shell impact concepts for fast ignition. Laser Part. Beams 23, 4346.CrossRefGoogle Scholar
Verker, R., Eliaz, N., Gouzman, I., Eliezer, S., Fraenkel, M., Maman, S., Beckmann, F., Pranzas, K. & Grossman, E. (2004). The effect of simulated hypervelocity space debris on polymers. Acta Mat. 52, 55395549.Google Scholar