Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T01:56:11.914Z Has data issue: false hasContentIssue false

The output of a laser amplifier with simultaneous amplified spontaneous emission and an injected seed

Published online by Cambridge University Press:  19 June 2009

H. Huang
Affiliation:
Department of Physics, University of York, York, United Kingdom
G.J. Tallents*
Affiliation:
Department of Physics, University of York, York, United Kingdom
*
Address correspondence and reprint requests to: G.J. Tallents, Department of Physics, University of York, York YO10 5DD, United Kingdom. E-mail: [email protected]

Abstract

The minimum irradiance needed to overcome amplified spontaneous emission (ASE) of a seed beam injected into a laser amplifier is evaluated. The treatment is particularly applicable to extreme ultraviolet (EUV) and X-ray laser schemes to inject laser harmonic radiation as a seed into (1) plasma laser amplifiers and (2) free-electron lasers. Simple expressions and calculations are given for the minimum injected irradiance required for amplification of the injected seed beam to exceed ASE from the amplifier, including the effects of gain saturation, assuming one dimensional radiative transfer.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al'miev, I.R., Larroche, O., Benredjem, D., Dubau, J., Kazamias, S., Möller, C. & Klisnick, A. (2007). Dynamical description of transient X-ray lasers seeded with high order harmonic radiation through Maxwell-Bloch numerical simulations. Phys. Rev. Lett. 99, 123902.CrossRefGoogle ScholarPubMed
Ayvazyan, V. et al. (2006). First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J. D 37, 297303.CrossRefGoogle Scholar
Carillon, A., Chen, H.Z., Dhez, P., Dwivedi, L., Jacoby, J., Jaegle, P., Jamelot, G., Zhang, J., Key, M.H., Kidd, A., Klisnick, A., Kodama, R., Krishnan, J., Lewis, C.L.S., Neely, D., Norreys, P., O'Neill, D., Pert, G.J., Ramsden, S.A., Raucourt, J.P., Tallents, G.J. & Uhomoibhi, J. (1992). Saturated and near-diffraction-limited operation of an XUV laser at 23.6 nm. Phys. Rev. Lett. 68, 29172920.CrossRefGoogle ScholarPubMed
Casperson, L.W. (1977). Threshold characteristics of mirrorless lasers. J. Appl. Phys 48, 256262.CrossRefGoogle Scholar
Ditmire, T., Hutchinson, M.H.R., Key, M.H., Lewis, C.L.S., MacPhee, A., Neely, D., Perry, M.D., Smith, R.A., Wark, J.S. & Zepf, M. (1995). Amplification of XUV harmonic radiation in a gallium amplifier. Phys. Rev. A 51, R4337R4340.CrossRefGoogle Scholar
Edwards, M.H., Whittaker, D.S., Tallents, G.J., Mistry, P., Pert, G.J., Rus, B., Mocek, T., Kozlová, M., Polan, J., Praeg, A., Stupka, M. & Homer, P. (2007). Laser-ablation rates measured using X-ray laser transmission. Phys. Rev. Lett. 99, 195002.CrossRefGoogle ScholarPubMed
Edwards, M.H., Whittaker, D., Mistry, P., Booth, N., Pert, G.J., Tallents, G.J., Rus, B., Mocek, T., Koslova, M., McKenna, C., Delserieys, A., Lewis, C.L.S., Notley, M. & Neely, D. (2006). Opacity measurements of a hot iron plasma using an X-ray laser. Phys. Rev. Lett. 97, 035001.CrossRefGoogle ScholarPubMed
Elias, L.R., Fairbank, W.M., Madey, J.M.J., Schwettman, H.A. & Smith, T.I. (1976). Observation of stimulated emission radiation by relativistic electrons in a spatially periodic transverse magnetic field. Phys. Rev. Lett. 36, 717720.CrossRefGoogle Scholar
Guilbaud, O., Klisnick, A., Cassou, K., Kazamias, S., Ros, D., Jamelot, G., Joyeux, D. & Phalippou, D. (2006). Origin of microstructures in picosecond X-ray laser beams. Europhys. Lett. 74, 823829.CrossRefGoogle Scholar
Keenan, R., Dunn, J., Patel, P.K., Price, D.F., Smith, R.F. & Shlyaptsev, V.N. (2005). High-repetition-rate grazing-incidence pumped X-ray laser operating at 18.9 nm. Phys. Rev. Lett. 94, 103901.CrossRefGoogle ScholarPubMed
Kuehl, T., Ursescu, D., Bagnoud, V., Javorkova, D., Rosmej, O., Cassou, K., Kazamias, S., Klisnick, A., Ros, D., Nickles, P., Zielbauer, B., Dunn, J., Neumayer, P., Pert, G. & Team, P. (2007). Optimization of the non-normal incidence, transient pumped plasma X-ray laser for laser spectroscopy and plasma diagnostics at the facility for antiproton and ion research (FAIR). Laser Part. Beams 25, 9397.CrossRefGoogle Scholar
Lambert, G., et al. (2008). Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light. Nat. Phys. 4, 296300.CrossRefGoogle Scholar
Lewis, C.L.S., Neely, D., O'Neill, D., Uhomoibhi, J.O., Key, M.H., Hadithi, Y.A., Tallents, G.J. & Ramsden, S.A. (1992). An injector/amplifier double target configuration for the Ne-like Ge-like ray laser scheme. Opt. Commun. 91, 71.CrossRefGoogle Scholar
Madey, J.M.J. (1971). Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 19061913.CrossRefGoogle Scholar
McNeil, B.W.J., Clarke, J.A., Dunning, D.J., Hirst, G.J., Owen, H.L., Thompson, N.R., Sheehy, B. & Williams, P.H. (2007). An XUV-FEL amplifier seeded using high harmonic generation. New J. Phys. 9, 131.CrossRefGoogle Scholar
Milton, S.V., Gluskin, E., Arnold, N.D., Benson, C., Berg, W., Biedron, S.G., Borland, M., Chae, Y.C., Dejus, R.J., Hartod, P.K.D., Deriy, B., Erdmann, M., Eidelman, Y.I., Hahne, M.W., Huang, Z., Kim, K.J., Lewellen, J.W., Li, Y., Lumpkin, A.H., Makarov, O., Moog, E.R., Nassiri, A., Sajaev, V., Soliday, R., Tieman, B.J., Trakhtenberg, E.M., Travish, G., Vasserman, I.B., Vinokurov, N.A., Wang, X.J., Wiemerslage, G. & Yang, B.X. (2001). Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser. Sci. 292, 20372041.CrossRefGoogle ScholarPubMed
Mistry, P., Edwards, M.H. & Tallents, G.J. (2006). X-ray laser pulse at Fourier transform limit. Phys. Rev. A 75, 013818.CrossRefGoogle Scholar
Mocek, T., Sebban, S., Maynard, G., Zeitoun, Ph., Gaivre, G., Hallou, A., Fajardo, M., Kazamias, S., Cros, B., Aubert, D., Lachèze-Murel, G. Ge., Rousseau, J.P. & Dubau, J. (2005). Absolute time-resolved X-ray laser gain measurement. Phys. Rev. Lett. 95, 173902.CrossRefGoogle ScholarPubMed
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.J., Kuehl, T., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser Part. Beams 23, 385389.CrossRefGoogle Scholar
Pert, G.J. (1994). Output characteristics of amplified-stimulated-emission lasers. J. Opt. Soc. Am. B 11, 14251435.CrossRefGoogle Scholar
Purvis, M., Grava, J., Filevich, J., Marconi, M.C., Dunn, J., Moon, S.J., Shlyaptsev, V.N., Jankowska, E. & Rocca, J.J. (2007). Dynamics of converging laser-created plasmas in semicylindrical cavities studied using soft X-ray laser interferometry. Phys. Rev. E 76, 046402.CrossRefGoogle ScholarPubMed
Rocca, J.J. (1999). Table-top soft X-ray lasers. Rev. Sci. Instrum. 70, 37993827.CrossRefGoogle Scholar
Schwettman, H.A. (1999). Superconducting linac as free electron laser drivers. IEEE Trans. Appl. Superconduct. 9, 863868.CrossRefGoogle Scholar
Tallents, G.J., Booth, N.Edwards, M.H., Gartside, L.M.R., Whittaker, D.S., Zhai, Z., Rus, B., Mocek, T., Koslova, M., Polan, J. & Homer, P. (2009). Measurements of opacity and temperature of warm dense matter heated by focused soft X-ray laser irradiation. Hi. Ener. Density Phys. doi:10.1016/j.hedp.2009.03.006.CrossRefGoogle Scholar
Tallents, G.J. (2003). The physics of soft X-ray lasers pumped by electron collisions in laser plasmas. J. Phys. D: Appl. Phys. 36, R259R276.CrossRefGoogle Scholar
Tallents, G.J. (2008). Free electron lasers, 5.6 X-ray lasers. In Handbook of Optics. New York: McGraw-Hill and Optical Society of America.Google Scholar
Tűmmler, J., Janulewicz, K.A., Priebe, G. & Nickles, P.V. (2005). 10-Hz grazing-incidence pumped Bi-like Mo X-ray laser. Phys. Rev. E 72, 037401.CrossRefGoogle Scholar
Wagner, T., Eberl, E., Frank, K., Hartmann, W., Hoffmann, D.H.H. & Tkotz, R. (1996). XUV amplification in a recombining z-pinch plasma. Phys. Rev. Lett. 76, 31243127.CrossRefGoogle Scholar
Wang, Y., Granados, E., Larotonda, M.A., Berrill, M., Luther, B.M., Patel, C.S., Menoni, C.S. & Rocca, J.J. (2006). High-brightness injection-seeded soft-X-ray-laser amplifier using a solid target. Phys. Rev. Lett. 97, 123901.CrossRefGoogle ScholarPubMed
Yu, L.H., Babzien, M., Ben-Zvi, I., Dimauro, L.F., Doyuran, A., Graves, W., Johnson, E., Krinsky, S., Malone, R., Pogorelsky, I., Skaritka, J., Rakowsky, G., Solomon, L., Wang, X.J., Woodle, M., Yakimenko, V., Biedron, S.G., Galayda, J.N., Jagger, J., Gluskin, E., Jagger, J., Sajaev, V. & Vasserman, I. (2000). High gain harmonic generation free electron laser. Sci. 289, 932934.CrossRefGoogle ScholarPubMed
Zeitoun, Ph., Faivre, G., Sebban, S., Mocek, T., Hallou, A., Fajardo, M., Aubert, D., Balcou, Ph., Burgy, F., Douillet, D., Kazamias, S., De Lachèze-Murel, G., Lefrou, T., Le Pape, S., Mercère, P., Merdji, H., Morlens, A.S., Rousseau, J.P. & Valentin, C. (2004). A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam. Nat. 431, 426.CrossRefGoogle ScholarPubMed
Ziaja, B., Weckert, E. & Moller, T. (2007). Statistical model of radiation damage within an atomic cluster irradiated by photons from free-electron-laser. Laser Part. Beams 25, 407414.CrossRefGoogle Scholar