Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T11:43:17.837Z Has data issue: false hasContentIssue false

Numerical modelling of radiation Marshak Waves

Published online by Cambridge University Press:  09 March 2009

N. A. Tahir
Affiliation:
Institut für Neutronenphysik und Reaktortechnik, Kernforschungszentrum Karlsruhe, Postfach 3640, D-7500 Karlsruhe, Federal Republic of Germany
K. A. Long
Affiliation:
Institut für Neutronenphysik und Reaktortechnik, Kernforschungszentrum Karlsruhe, Postfach 3640, D-7500 Karlsruhe, Federal Republic of Germany

Abstract

In this paper we discuss the importance of radiation transport in inertial confinement fusion (ICF) target design. It is shown that a self similar solution of non-linear heat conduction can be used to estimate the penetration depth of radiation thermal waves (Marshak Waves) in ion-beam ICF pellets. An improved numerical treatment of non-linear heat conduction has been incorporated into the hydrodynamic code MEDUSA-KA to simulate radiation transport in ICF target design studies. The numerical results have been checked against self-similar solutions and a comparison between the two is presented in this paper. We find good agreement between the two. The necessity of using a high-z radiation shield to protect the fuel from radiative preheat is also discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badger, B., Arendt, F., Becker, K. & Bock, R., et al. 1981 HIBALL—A Conceptual Heavy Ion Beam Driven Fusion Reactor Study, University of Wisconsin Rep., UWFDM-450, Kernforschungszentrum Karlsruhe, Rep. KfK-3202 (1981).Google Scholar
Bodner, S. E. 1981 J. Fusion Energy, 1, 219.CrossRefGoogle Scholar
Fraley, G. S. & Gula, W. P. 1975 Phys. Rev. Lett. 35, 520.CrossRefGoogle Scholar
Frohlich, R., Goel, B., Henderson, D., Höbel, W., Long, K. A. & Tahir, N. A. 1982 Nucl. Eng. Des. 73, 201.Google Scholar
Kidder, R. E. 1979 Nucl. Fusion, 19, 223.Google Scholar
Long, K. A. & Tahir, N. A. 1982 Phys. Lett. 91A, 451.Google Scholar
Long, K. A., Moritz, N. & Tahir, N. A. 1982 GSI Darmstadt Annual Report, GSI–82–6, 54.Google Scholar
Long, K. A., Moritz, N. & Tahir, N. A. 1982 GSI Darmstadt Annual Report, GSI–82–6, 56.Google Scholar
Long, K. A., Tahir, N. A. & Pomraning, G. C. 1983 GSI Darmstadt Annual Report, GSI–83–2, 39.Google Scholar
Marshak, R. E. 1958 Phys. Fluids, 1, 24.CrossRefGoogle Scholar
Mason, R. J. & Morse, R. L. 1974 Tamped thermonuclear burn of DT microspheres, Los Alamos Rep. LA–5789–MS.Google Scholar
Petschek, A. G.Williamson, R. E. & Wooten, J. K. 1960 The penetration of Radiation with Constant Driving Temperature, Los Alamos Rep. LAMS 2421.Google Scholar
Tahir, N. A. & Laing, E. W. 1980a Phys. Lett. 77A, 430.Google Scholar
Tahir, N. A. & Laing, E. W. 1980b Plasma Phys. 22, 1113.Google Scholar
Tahir, N. A. & Long, K. A. 1982a Atomkernenergie 40, 157.Google Scholar
Tahir, N. A. & Long, K. A. 1982b GSI Darmstadt Annual Report, GSI–82–6, 59.Google Scholar
Tahir, N. A. & Long, K. A. 1983a Nucl. Fusion, 23, 887.Google Scholar
Tahir, N. A. & Long, K. A. 1983b GSI Darmstadt, Annual Report, GSI–83–2, 38.Google Scholar
Tahir, N. A. & Long, K. A. 1983c GSI Darmstadt Annual Report, GSI–83–2, 53.Google Scholar
Tahir, N. A., Long, K. A. & Fröhlich, R. 1982 HIBALL Target Design (Proc. Symp. Accelerator Aspects of Heavy Ion Fusion) GSI Darmstadt Rep., GSI–82–8, 598.Google Scholar
Tahir, N. A. & Long, K. A. 1983 MEDUSA-KA: A One-Dimensional Computer Code for Inertial Confinement Fusion Target Design, Kernforschungszentrum Karlsruhe Report KfK-3454.Google Scholar
Zel'dovich, Ya. B. & Raizer, Yu. P. 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. 2, Academic Press.Google Scholar