Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-19T03:03:45.083Z Has data issue: false hasContentIssue false

Numerical investigation of the influence of wavefront distortion on the laser near-field characteristics

Published online by Cambridge University Press:  23 October 2017

S. Li*
Affiliation:
Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China
Z. Lu
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China
X. Fan
Affiliation:
Institute of New Electromagnetic Materials & School of Physics and Optoelectronic Engineering, Weifang University, Weifang 261061, China
L. Ding
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
*
Address correspondence and reprint requests to: S. Li, Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China. E-mail: [email protected]

Abstract

The effect of the initial phase distortion of the laser on near-field transmission characteristics in free space is investigated both numerically and theoretically. It is demonstrated and proposed that the near-field modulation and fluence contrast of the output laser beam are changing with the increase of both spatial low- and high-frequency wavefront distortion. The simulation results show that in order to ensure the beam quality in propagation, the Fresnel number should be controlled not <50 generally and the wavefront distortion should also be minimized by controlling both low- and high-frequency phase coefficient not larger than 0.6.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bahk, S.-W., Begishev, I. & Zuegel, J. (2014). Precompensation of gain nonuniformity in a Nd: glass amplifier using a programmable beam-shaping system. Opt. Commun. 333, 4552.Google Scholar
Bahk, S.-W., Zuegel, J.D., Fienup, J.R., Widmayer, C.C. & Heebner, J. (2008). Spot-shadowing optimization to mitigate damage growth in a high-energy-laser amplifier chain. Appl. Opt. 47, 65866593.Google Scholar
Bai, Y., Zhang, L., Liao, W., Zhou, H., Zhang, C., Chen, J., Ye, Y., Jiang, Y., Wang, H., Luan, X., Yuan, X. & Zheng, W. (2016a). Study of downstream light intensity modulation induced by mitigated damage pits of fused silica using numerical simulation and experimental measurements. Acta Phys. Sin. 65, 024205.Google Scholar
Bai, Z., Wang, Y., Lu, Z., Yuan, H., Zheng, Z., Li, S., Chen, Y., Liu, Z., Cui, C., Wang, H. & Liu, R. (2016b). High compact, high quality single longitudinal mode hundred picoseconds laser based on stimulated Brillouin scattering pulse compression. Appl. Sci. 6, 29.CrossRefGoogle Scholar
Barczys, M., Bahk, S.-W., Spilatro, M., Coppenbarger, D., Hill, E., Hinterman, T., Kidder, R., Puth, J., Touris, T. & Zuegel, J. (2013). Deployment of a spatial light modulator-based beam-shaping system on the OMEGA EP laser. Conference Deployment of A Spatial Light Modulator-Based Beam-Shaping System on the OMEGA EP laser, International Society for Optics and Photonics, pp. 86020F.CrossRefGoogle Scholar
Beck, R.J., Parry, J.P., MacPherson, W.N., Waddie, A., Weston, N.J., Shephard, J.D. & Hand, D.P. (2010). Application of cooled spatial light modulator for high power nanosecond laser micromachining. Opt. Express 18, 1705917065.Google Scholar
Chen, X., Li, X., Chen, Z., Pu, J., Zhang, G. & Zhu, J. (2013). Propagation characteristics of a high-power broadband laser beam passing through a nonlinear optical medium with defects. High Power Laser Sci. Eng. 1, 132137.Google Scholar
Divoky, M., Sikocinski, P., Pilar, J., Lucianetti, A., Sawicka, M., Slezak, O. & Mocek, T. (2013). Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion. Opt. Eng. 52, 064201.Google Scholar
Divoky, M., Smrz, M., Chyla, M., Sikocinski, P., Severova, P., Novak, O., Huynh, J., Nagisetty, S., Miura, T. & Pilař, J. (2014). Overview of the HiLASE project: high average power pulsed DPSSL systems for research and industry. High Power Laser Sci. Eng. 2, e14.Google Scholar
Dorrer, C. & Zuegel, J. (2007a). Optical testing using the transport-of-intensity equation. Opt. Express 15, 71657175.CrossRefGoogle ScholarPubMed
Dorrer, C. & Zuegel, J.D. (2007b). Characterization of high-frequency surface modulation using the transport-of-intensity equation. Conference Characterization of High-Frequency Surface Modulation Using the Transport-of-Intensity Equation. Optical Society of America, pp. CTuT6.Google Scholar
Edwards, C.B. & Danson, C.N. (2015). Inertial confinement fusion and prospects for power production. High Power Laser Sci. Eng. 3, e4.Google Scholar
Elder, I. (2010). Performance requirements for countermeasures lasers. Conference Performance Requirements for Countermeasures Lasers. International Society for Optics and Photonics, pp. 783605.Google Scholar
Ertel, K., Hooker, C., Hawkes, S.J., Parry, B.T. & Collier, J.L. (2008). ASE suppression in a high energy titanium sapphire amplifier. Opt. Express 16, 80398049.CrossRefGoogle Scholar
Eyyuboğlu, H.T., Arpali, Ç. & Baykal, Y. (2006). Flat topped beams and their characteristics in turbulent media. Opt. Express 14, 41964207.Google Scholar
Fan, X., Lu, Z., Lin, D., Yang, F., Liu, Y., Dong, Y., Zhu, C. & Hasi, W. (2013). Numerical investigation of the effects of smoothing by spectral dispersion on stimulated rotational Raman scattering. Laser Part. Beams 31, 171175.Google Scholar
Fu, F. & Zhang, B. (2012). The influence of high-frequency phase and correction distance on the phase correction effect. J. Mod. Opt. 59, 402407.Google Scholar
Grant, S.D. & Abdolvand, A. (2014). Evolution of conically diffracted Gaussian beams in free space. Opt. Express 22, 38803886.Google Scholar
Guardalben, M. & Waxer, L. (2011). Improvements to long-pulse system performance and operational efficiency on OMEGA EP. Conference Improvements to Long-pulse System Performance and Operational Efficiency on OMEGA EP. International Society for Optics and Photonics, pp. 79160G.Google Scholar
Haynam, C., Wegner, P., Auerbach, J., Bowers, M., Dixit, S., Erbert, G., Heestand, G., Henesian, M., Hermann, M. & Jancaitis, K. (2007). National Ignition Facility laser performance status. Appl. Opt. 46, 32763303.Google Scholar
Hongjie, L., Jin, H., Fengrui, W., Xinda, Z., Xin, Y., Xiaoyan, Z., Laixi, S., Xiaodong, J., Zhan, S. & Wanguo, Z. (2013). Subsurface defects of fused silica optics and laser induced damage at 351 nm. Opt. Express 21, 1220412217.Google Scholar
Li, S., Wang, Y., Lu, Z., Ding, L., Chen, Y., Du, P., Ba, D., Zheng, Z., Wang, X., Yuan, H., Zhu, C., He, W., Lin, D., Dong, Y., Zhou, D., Bai, Z., Liu, Z. & Cui, C. (2016a). Hundred-Joule-level, nanosecond-pulse Nd: glass laser system with high spatiotemporal beam quality. High Power Laser Sci. Eng. 4, e10.CrossRefGoogle Scholar
Li, S., Wang, Y., Lu, Z., Ding, L., Cui, C., Chen, Y., Pengyuan, D., Ba, D., Zheng, Z., Yuan, H., Shi, L., Bai, Z., Liu, Z., Zhu, C., Dong, Y. & Zhou, L. (2016b). Spatial beam shaping for high-power frequency tripling lasers based on a liquid crystal spatial light modulator. Opt. Commun. 367, 181185.Google Scholar
Li, S., Wang, Y., Lu, Z., Ding, L., Du, P., Chen, Y., Zheng, Z., Ba, D., Dong, Y. & Yuan, H. (2015). High-quality near-field beam achieved in a high-power laser based on SLM adaptive beam-shaping system. Opt. Express 23, 681689.Google Scholar
Li, S., Zhou, L., Cui, C., Wang, K., Yan, X., Wang, Y., Ding, L., Wang, Y. & Lu, Z. (2017). Wavefront shaping by a small-aperture deformable mirror in the front stage for high-power laser systems. Appl. Sci. 7, 379.Google Scholar
Liao, Z.M., Raymond, B., Gaylord, J., Fallejo, R., Bude, J. & Wegner, P. (2014). Damage modeling and statistical analysis of optics damage performance in MJ-class laser systems. Opt. Express 22, 2884528856.CrossRefGoogle Scholar
Lu, B. & Luo, S. (2000). General propagation equation of flattened Gaussian beams. J. Opt. Soc. Am. A 17, 20012004.Google Scholar
Mainguy, S., Tovena-Pecault, I. & Le Garrec, B. (2005). Propagation of LIL/LMJ beams under the interaction with contamination particles. Conf. Propagation of LIL/LMJ Beams under the Interaction with Contamination Particles. International Society for Optics and Photonics, pp. 5991.Google Scholar
Manes, K.R. & Simmons, W.W. (1985). Statistical optics applied to high-power glass lasers. J. Opt. Soc. Am. A 2, 528538.Google Scholar
Morice, O. (2003). Miró: complete modeling and software for pulse amplification and propagation in high-power laser systems. Opt. Eng. 42, 15301541.Google Scholar
Moses, E.I. (2009). Ignition on the National Ignition Facility: a path towards inertial fusion energy. Nucl. Fusion 49, 104022.Google Scholar
Norman, M.J., Andrew, J.E., Bett, T.H., Clifford, R.K., England, J.E., Hopps, N.W., Parker, K.W., Porter, K. & Stevenson, M. (2002). Multipass reconfiguration of the HELEN Nd: glass laser at the Atomic Weapons Establishment. Appl. Opt. 41, 34973505.Google Scholar
Nostrand, M.C., Weiland, T.L., Luthi, R.L., Vickers, J.L., Sell, W.D., Stanley, J.A., Honig, J., Auerbach, J., Hackel, R.P. & Wegner, P.J. (2004). A large-aperture high-energy laser system for optics and optical component testing. Conference A Large-Aperture High-Energy Laser System for Optics and Optical Component Testing. International Society for Optics and Photonics, pp. 325–333.Google Scholar
Obenschain, S., Lehmberg, R., Kehne, D., Hegeler, F., Wolford, M., Sethian, J., Weaver, J. & Karasik, M. (2015). High-energy krypton fluoride lasers for inertial fusion. Appl. Opt. 54, F103F122.Google Scholar
Pilar, J., Slezak, O., Sikocinski, P., Divoky, M., Sawicka, M., Bonora, S., Lucianetti, A., Mocek, T. & Jelinkova, H. (2014). Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE) Appl. Opt. 53, 32553261.Google Scholar
Remo, J.L. & Adams, R.G. (2008). High energy density laser interactions with planetary and astrophysical materials: methodology and data. Conference High Energy Density Laser Interactions with Planetary and Astrophysical Materials: Methodology and Data. International Society for Optics and Photonics, pp. 70052M.Google Scholar
Runkel, M., Hawley-Fedder, R., Widmayer, C., Williams, W., Weinzapfel, C. & Roberts, D. (2005). A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optics. Conference A System for Measuring Defect Induced Beam Modulation on Inertial Confinement Fusion-Class Laser Optics. International Society for Optics and Photonics, pp. 59912H.Google Scholar
Semak, V. & Shneider, M. (2015). Electromagnetic beam propagation in nonlinear media. High Power Laser Sci. Eng. 3, e11.Google Scholar
Simmons, W., Hunt, J. & Warren, W. (1981). Light propagation through large laser systems. IEEE J. Quantum Electron. 17, 17271744.Google Scholar
Speck, D., Bliss, E., Glaze, J., Herris, J., Holloway, F., Hunt, J., Johnson, B., Kuizenga, D., Ozarski, R. & Patton, H. (1981). The Shiva laser-fusion facility. IEEE J. Quantum Electron. 17, 15991619.Google Scholar
Sprangle, P. & Hafizi, B. (2014). High-power, high-intensity laser propagation and interactions a. Phys. Plasmas 21, 055402.Google Scholar
Teich, M.C. & Saleh, B. (1991). Fundamentals of Photonics. Canada: Wiley Interscience 3.Google Scholar
Van Wonterghem, B.M., Burkhart, S.C., Haynam, C.A., Manes, K.R., Marshall, C.D., Murray, J.E., Spaeth, M.L., Speck, D.R., Sutton, S.B. & Wegner, P.J. (2004). National Ignition Facility commissioning and performance. Conference National Ignition Facility Commissioning and Performance. International Society for Optics and Photonics, pp. 55–65.Google Scholar
Van Wonterghem, B.M., Murray, J.R., Campbell, J.H., Speck, D.R., Barker, C.E., Smith, I.C., Browning, D.F. & Behrendt, W.C. (1997). Performance of a prototype for a large-aperture multipass Nd: glass laser for inertial confinement fusion. Appl. Opt. 36, 49324953.Google Scholar
Wilfert, O., Komrska, J., Poliak, J. & Kolka, Z. (2011). Influence of optical elements on the laser beam profile. Conference Influence of Optical Elements on the Laser Beam Profile. International Society for Optics and Photonics, pp. 81620V.Google Scholar
Williams, W., Auerbach, J., Hunt, J., Lawson, L., Manes, K., Orth, C., Sacks, R., Trenholme, J. & Wegner, P. (1997). NIF Optics Phase Gradient Specification. CA, USA: United States: Lawrence Livermore National Lab.Google Scholar
Williams, W.H., Auerbach, J.M., Henesian, M.A., Lawson, J.K., Hunt, J.T., Sacks, R.A. & Widmayer, C.C. (1998). Modeling characterization of the National Ignition Facility focal spot. Conference Modeling Characterization of the National Ignition Facility Focal Spot. International Society for Optics and Photonics, pp. 93–104.Google Scholar
Yu, M., Hu, G., An, N., Qian, F., Wu, Y., Zhang, X., Gu, Y., Wang, Q. & Zheng, J. (2016). Hard x-ray transmission curved crystal spectrometers (10–100 keV) for laser fusion experiments at the ShenGuang-III laser facility. High Power Laser Sci. Eng. 4, e2.Google Scholar
Zhang, X., Zheng, W., Wei, X., Jing, F., Sui, Z., Zheng, K., Xu, Q., Yuan, X., Jiang, X. & Yang, L. (2008). The TIL commissioning and performance. Conference the TIL Commissioning and Performance, IOP Publishing, pp. 032008.Google Scholar