Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T08:14:11.676Z Has data issue: false hasContentIssue false

A numerical investigation of laser pressure effects in underdense plasmas

Published online by Cambridge University Press:  09 March 2009

G. J. Tallents
Affiliation:
Laser Physics Laboratory, Department of Engineering Physics, Research School of Physical Sciences, The Australian National University, Canberra, ACT, 2600, Australia

Abstract

The one-dimensional Lagrangian code MEDUSA has been adapted to model the pressure of laser photons and the transfer of laser light momentum to underdense plasma investigated using the modified code. It is shown for lasers of wavelength ≃ 1μm that the plasma electron density needs to be close to the critical density (1021cm−3) and that the laser intensity needs to be greater than ∼1016Wcm−2 for significant laser momentum transfer to plasma. It was found that small plasmas (scale-length = 1 μm) result in the best ‘signature’ of laser light momentum transfer to plasma (more enhanced expansion velocities) but that the largest momentum transfer is for the largest plasmas considered (scale-length = 100 μm). The formation of suitable underdense plasmas for momentum transfer by a laser pre-pulse onto a foil target is investigated using a two-dimensional Eulerian code.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Attwood, D. T., Sweeney, D. W., Auerbach, J. M. & Lee, P. H. Y. 1978 Phys Rev Lett. 40, 184187.CrossRefGoogle Scholar
Azechi, H., Oda, S., Tanaka, K., Norimatsu, T., Sasuki, T., Yamanaka, T. & Yamanaka, C. 1977 Phys Rev Lett. 39, 11441147.CrossRefGoogle Scholar
Burgess, M. D. J., Dragila, R., Luther-Davies, B., Nugent, K. A. & Tallents, G. J. 1983 Laser Interaction and Related Plasma Phenomena (ed. Hora, H. and Miley, G. H.) (Plenum: New York) Vol. 6A, p. 463.Google Scholar
Christiansen, J. P., Ashby, D. E. T. F. & Roberts, K. V. 1974 Comput Phys Commun 7, 271287.CrossRefGoogle Scholar
De Groot, J. S. & Tull, J. E. 1975 Phys Fluids 18, 672678.CrossRefGoogle Scholar
Del Pizzo, V. & Luther-Davies, B. 1979 J Phys D 12, 12611273.CrossRefGoogle Scholar
Donaldson, T. P. & Spalding, I. J. 1976 Phys Rev Lett 36, 467470.CrossRefGoogle Scholar
Dragila, R. & Krepelka, J. 1978 J Physique 39, 617623.CrossRefGoogle Scholar
Dragila, R. 1981 J Physique 42, 14131419.CrossRefGoogle Scholar
Fedosejevs, R., Tomov, I. V., Burnett, N. H., Enright, G. D. & Richardson, M. C., 1977 Phys Rev Lett 34, 932935.CrossRefGoogle Scholar
Fedosejevs, R., Burgess, M. D. J., Enright, G. D. & Richardson, M. C., 1979 Phys Rev Lett 43, 16641667.CrossRefGoogle Scholar
Fedosejevs, R., Burgess, M. D. J., Enright, G. D. & Richardson, M. C., 1981 Phys Fluids 24, 537547.CrossRefGoogle Scholar
Ginzburg, V. L., 1964 The Propagation of Electromagnetic Waves in Plasmas (Pergamon: Oxford) pp 180185.Google Scholar
Hora, H. 1969 Phys Fluids 12, 182191.CrossRefGoogle Scholar
Hora, H. 1976a Aust J Phys 29, 375388.CrossRefGoogle Scholar
Hora, H. 1976b Sov J Quant Elect 6, 154159.CrossRefGoogle Scholar
Hora, H. 1981 Physics of Laser Driven Plasmas (Wiley: New York) pp 244262.Google Scholar
Jones, R. D., Aldrich, C. H. & Lee, K. 1981 Phys Fluids 24, 310315.CrossRefGoogle Scholar
Kaw, P., Schmidt, G. & Wilcox, T. 1973 Phys Fluids 16, 15221525.CrossRefGoogle Scholar
Lee, K., Forslund, D. W., Kindel, J. M. & Lindman, E. L. 1977 Phys Fluids 20, 5154.CrossRefGoogle Scholar
Luther-Davies, B. 1980 Opt Commun 34, 421423.CrossRefGoogle Scholar
Max, C. E. & McKee, C. F. 1977 Phys Rev Lett 39, 13361339.CrossRefGoogle Scholar
Mulser, P. & Van Kessel, C. 1977 Phys Rev Lett 38, 902905.CrossRefGoogle Scholar
Pert, G. J. 1974 Plasma Phys 16, 10511068.CrossRefGoogle Scholar
Pert, G. J. 1980 J Fluid Mech 100, 257277.CrossRefGoogle Scholar
Pert, G. J. 1981 J Comput Phys 43, 111163.CrossRefGoogle Scholar
Pert, G. J. & Tallents, G. J. 1981 J Phys B 14, 15251535.CrossRefGoogle Scholar
Randall, C. & De Groot, J. S., 1979 Phys Rev Lett 42, 19791982.CrossRefGoogle Scholar
Raven, A. & Willi, O. 1979 Phys Rev Lett 43, 278282.CrossRefGoogle Scholar
Spitzer, L, 1962 Physics of Fully Ionized Gases (Interscience: New York) pp 131136.Google Scholar
Virmont, J., Pellat, R. & Mora, A. 1978 Phys Fluids 21, 567573.CrossRefGoogle Scholar
Willi, O., Evans, R. G. & Raven, A. 1980 Phys Fluids 23, 20612065.CrossRefGoogle Scholar
Wong, A. Y. & Stenzel, R. L., 1975 Phys Rev Let 34, 727730.CrossRefGoogle Scholar