Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T05:29:00.436Z Has data issue: false hasContentIssue false

National Ignition Facility target design and fabrication

Published online by Cambridge University Press:  01 August 2008

R.C. Cook*
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
B.J. Kozioziemski
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
A. Nikroo
Affiliation:
General Atomics, San Diego, California
H.L. Wilkens
Affiliation:
General Atomics, San Diego, California
S. Bhandarkar
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
A.C. Forsman
Affiliation:
General Atomics, San Diego, California
S.W. Haan
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
M.L. Hoppe
Affiliation:
General Atomics, San Diego, California
H. Huang
Affiliation:
General Atomics, San Diego, California
E. Mapoles
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
J.D. Moody
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
J.D. Sater
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
R.M. Seugling
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
R.B. Stephens
Affiliation:
General Atomics, San Diego, California
M. Takagi
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
H.W. Xu
Affiliation:
General Atomics, San Diego, California
*
Address correspondence and reprint requests to: Robert Cook, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550. E-mail: [email protected]

Abstract

The current capsule target design for the first ignition experiments at the NIF Facility beginning in 2009 will be a copper-doped beryllium capsule, roughly 2 mm in diameter with 160-µm walls. The capsule will have a 75-µm layer of solid deuterium-tritium on the inside surface, and the capsule will be powered by X-rays generated from a gold/uranium cocktail hohlraum. The design specifications are extremely rigorous, particularly with respect to interfaces, which must be very smooth to inhibit Rayleigh-Taylor instability growth. This paper outlines the current design, and focuses on the challenges and advances in capsule fabrication and characterization; hohlraum fabrication, and deuterium-tritium layering and characterization.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernat, T.P., Mapoles, E.R. & Sanchez, J.J. (1991). Temperature and age dependence of redistribution rates of frozen deuterium-tritium. LLNL 1991 ICF Annual Report, pp. 5559.Google Scholar
Bhandarkar, S., Letts, S.A., Buckley, S., Alford, C., Lindsey, E., Hughes, J., Youngblood, K.P., Moreno, K., Xu, H., Huang, H. & Nikroo, A. (2007). Removal of the mandrel from beryllium sputter coated capsules for NIF targets. Fusion Sci. Technol. 51, 564571.CrossRefGoogle Scholar
Biener, J., Mirkarimi, P.B., Tringe, J.W., Baker, S.L., Wang, Y., Kucheyev, S.O., Teslich, N.E., Wu, K.J.J., Hamza, A.V., Wild, C., Woerner, E., Koidl, P., Bruehne, K. & Fecht, H.J. (2006). Diamond ablators for inertial confinement fusion. Fusion Sci. Technol. 49, 737742.CrossRefGoogle Scholar
Chen, K.C., Cook, R.C., Huang, H., Letts, S.A. & Nikroo, A. (2006). Fabrication of graded germanium-doped CH shells. Fusion Sci. Technol. 49, 750756.CrossRefGoogle Scholar
Chen, K.C., Lee, Y.T., Huang, H., Gibson, J.B., Nikroo, A., Johnson, M.A. & Mapoles, E. (2007). Reduction of isolated defects on Ge-doped CH capsules to below ignition specifications. Fusion Sci. Technol. 51, 593599.CrossRefGoogle Scholar
Cook, R.C., Letts, S.A., Buckley, S.R. & Fearon, E. (2006). Pyrolytic removal of the plastic mandrel from sputtered beryllium shells. Fusion Sci. Technol. 49, 802808.CrossRefGoogle Scholar
Eddinger, S.A., Stephens, R.B., Huang, H., Drake, T.J., Nikroo, A., Flint, G. & Bystedt, C.R. (2007). Precision X-ray optical depth measurements in ICF shells. Fusion Sci. Technol. 51, 525529.CrossRefGoogle Scholar
Forsman, A.C., Banks, P.S., Perry, M.D., Campbell, E.M., Dodell, A.L. & Armas, M.S. (2005). Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals. J. Appl. Phys. 98, 033302/1–033302/6.CrossRefGoogle Scholar
Geidt, W.H., Sanchez, J.J. & Bernat, T.P. (2006). Theory and numerical modeling of the effects of ablator wall and hohlraum transfer gas thermal resistances on deuterium-tritium redistribution rates. Fusion Sci. Technol. 49, 588599.CrossRefGoogle Scholar
Haan, S.W., Amendt, P.A., Callahan, D.A., Dittrich, T.R., Edwards, M.J., Hammel, B.A., Ho, D.D., Jones, O.S., Lindl, J.D., Marinak, M.M., Munro, D.H., Pollaine, S.M., Salmonson, J.D., Spears, B.K. & Suter, L.J. (2007 a). Update on specifications for NIF ignition targets. Fusion Sci. Technol. 51, 509513.CrossRefGoogle Scholar
Haan, S.W., Herrmann, M.C., Amendt, P.A., Callahan, D.A., Dittrich, T.R., Edwards, M.J., Jones, O.S., Marinak, M.M., Munro, D.H., Pollaine, S.M., Salmonson, J.D., Spears, B.K. & Suter, L.J. (2006). Update on specifications for NIF ignition targets, and their rollup into an error budget. Fusion Sci. Technol. 49, 553557.CrossRefGoogle Scholar
Haan, S.W., Herrmann, M.C., Dittrich, T.R., Fetterman, A.J., Marinak, M.M., Munro, D.H., Pollaine, S.M., Salmonson, J.D., Strobel, G.L. & Suter, L.J. (2005). Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities. Phys. Plasmas 12, 056316-1–056316-8.CrossRefGoogle Scholar
Haan, S.W., Herrmann, M.C., Salmonson, J.D., Amendt, P.A., Callahan, D.A., Dittrich, T.R., Edwards, M.J., Jones, O.S., Marinak, M.M., Munro, D.H., Pollaine, S.M., Spears, B.K. & Suter, L.J. (2007 b). Update on design simulations for NIF ignition targets, and the rollup of all specifications into an error budget. Eur. Phys. J. D 44, 249258.CrossRefGoogle Scholar
Haynam, C.A., Wegner, P.J., Auerbach, J.M., Bowers, M.W., Dixit, S.N., Erbert, G.V., Heestand, G.M., Henesian, M.A., Hermann, M.R., Jancaitis, K.S., Manes, K.R., Marshall, C.D., Mehta, N.C., Menapace, J., Moses, E., Murray, J.R., Nostrand, M.C., Orth, C.D., Patterson, R., Sacks, R.A., Shaw, M.J., Spaeth, M., Sutton, S.B., Williams, W.H., Widmayer, C.C., White, R.K., Yang, S.T. & Van Wonterghem, B.M. (2007). National ignition facility laser performance status. Appl. Optics 46, 32763303.CrossRefGoogle ScholarPubMed
Hoffer, J.K. & Foreman, L.R. (1988). Radioactively induced sublimation in solid tritium. Phys. Rev. Lett. 60, 13101313.CrossRefGoogle ScholarPubMed
Hoppe, M.L. & Castillo, E. (2006). Polishing of beryllium capsules to meet NIF specifications. J. de Physique IV 133, 895898.Google Scholar
Huang, H., Kozioziemski, B.J., Stephens, R.B., Nikroo, A., Eddinger, S.A., Chen, K.C., Xu, H.W. & Moreno, K.A. (2007 a). Quantitative radiography: Submicron dimension calibration for ICF ablator shell characterization. Fusion Sci. Technol. 51, 519524.CrossRefGoogle Scholar
Huang, H., Stephens, R.B., Nikroo, A., Eddinger, S.A., Chen, K.C., Xu, H.W., Moreno, K.A., Youngblood, K.P. & Skelton, M. (2007 b). Quantitative radiography: Film model calibration and dopant/impurity measurement in ICF ablators. Fusion Sci. Technol. 51, 530538.CrossRefGoogle Scholar
Kilkenny, J.D., Alexander, N.B., Nikroo, A., Steinman, D.A., Nobile, A., Bernat, T., Cook, R., Letts, S., Takagi, M. & Harding, D. (2005). Laser targets compensate for limitations in inertial confinement fusion drivers. Laser Part. Beams 23, 475482.CrossRefGoogle Scholar
Koch, J.A., Bernat, T.P., Collins, G.W., Hammel, B.A., Kozioziemski, B.J., MacKinnon, A.J., Sater, J.D., Bittner, D.N. & Lee, Y. (2000). Quantitative analysis of backlit shadowgraphy as a diagnostic of hydrogen ice surface quality in ICF capsules. Fusion Technol. 38, 123131.CrossRefGoogle Scholar
Kozioziemski, B.J., Montgomery, D.S., Sater, J.D., Moody, J.D., Gautier, C. & Pipes, J.W. (2007). Solid deuterium-tritium surface roughness in a beryllium inertial confinement fusion shell. Nucl. Fusion 47, 18.CrossRefGoogle Scholar
Landen, O.L., Glenzer, S.H., Froula, D.H., Dewald, E.L., Suter, L.J., Schneider, M.B., Hinkel, D.E., Fernandez, J.C., Kline, J.L., Goldman, S.R., Braun, D.G., Celliers, P.M., Moon, S.J., Robey, H.S., Lanier, N.E., Glendinning, S.G., Blue, B.E., Wilde, B.H., Jones, O.S., Schein, J., Divol, L., Kalantar, D.H., Campbell, K.M., Holder, J.P., McDonald, J.W., Niemann, C., Mackinnon, A.J., Collins, G.W., Bradley, D.K., Eggert, J.H., Hicks, D.C., Gregori, G., Kirkwood, R.K., Young, B.K., Foster, J.M., Hansen, J.F., Perry, T.S., Munro, D.H., Baldis, H.A., Grim, G.P., Heeter, R.F., Hegelich, M.B., Montgomery, D.S., Rochau, G.A., Olson, R.E., Turner, R.E., Workman, J.B., Berger, R.L., Cohen, B.I., Kruer, W.L., Langdon, A.B., Langer, S.H., Meezan, N.B., Rose, H.A., Still, C.H., Williams, E.A., Dodd, E.S., Edwards, M.J., Monteil, M.C., Stevenson, R.M., Thomas, B.R., Coker, R.F., Magelssen, C.R., Rosen, P.A., Stry, P.E., Woods, D., Weber, S.V., Young, P.E., Alvarez, S., Armstrong, G., Bahr, R., Bourgade, J.L., Bower, D., Celeste, J., Chrisp, M., Compton, S., Cox, J., Constantin, C., Costa, R., Duncan, J., Ellis, A., Emig, J., Gautier, C., Greenwood, A., Griffith, R., Holdner, F., Holtmeier, G., Hargrove, D., James, T., Kamperschroer, J., Kimbrough, J., Landon, M., Lee, F.D., Malone, R., May, M., Montelongo, S., Moody, J., Ng, E., Nikitin, A., Pellinen, D., Piston, K., Poole, M., Rekow, V., Rhodes, M., Shepherd, R., Shiromizu, S., Voloshin, D., Warrick, A., Watts, P., Weber, F., Young, P., Arnold, P., Atherton, L.G., Bonanno, R., Borger, T., Bowers, M., Bryant, R., Buckman, S., Burkhart, S., Cooper, F., Dixit, S.N., Erbert, G., Eder, D.C., Ehrlich, R.E., Felker, B., Fornes, J., Frieders, G., Gardner, S., Gates, C., Gonzalez, M., Grace, S., Hall, T., Haynam, C.A., Heestand, G., Henesian, M.A., Hermann, M., Hermes, G., Huber, S., Jancaitis, K., Johnson, S., Kauffman, B., Kelleher, T., Kohut, T., Koniges, A.E., Labiak, T., Latray, D., Lee, A., Lund, D., Mahavandi, S., Manes, K.R., Marshall, C., McBride, J., McCarville, T., McGrew, L., McNapace, J., Mertens, E., Murray, J., Neumann, J., Newton, A., P., Padilla, E., Parham, T., Parrish, G., Petty, C., Polk, M., Powell, C., Reinbachs, I., Rinnert, R., Riordan, B., Ross, G., Robert, V., Tobin, M., Sailors, S., Saunders, R., Schmitt, M., Shaw, M., Singh, M., Spaeth, M., Stephens, A., Tietbohl, G., Tuck, J., Van Wonterghem, B.M., Vidal, R., Wegner, P.J., Whitman, P., Williams, K., Winward, K., Work, K., Wallace, R., Nobile, A., Bono, M., Day, B., Elliott, J., Hatch, D., Louis, H., Manzenares, R., O'Brien, D., Papin, P., Pierce, T., Rivera, G., Ruppe, J., Sandoval, D., Schmidt, D., Valdez, L., Zapata, K., MacGowan, B.J., Eckart, M.J., Hsing, W.W., Springer, P.T., Hammel, B.A., Moses, E.I. & Miller, G.H. (2007). The first target experiments on the national ignition facility. Eur. Phys. J. D 44, 273281.CrossRefGoogle Scholar
Letts, S., Fearon, E., Anthamatten, M., Buckley, S., King, C. & Cook, R. (2006). Preparation of polyimide ablator coatings using an improved solvent vapor smoothing process. Fusion Sci. Technol. 49, 714720.CrossRefGoogle Scholar
Lindl, J.D. (1998). Inertial Confinement Fusion. New York: Springer-Verlag.Google Scholar
Lindl, J.D., Amendt, P., Berger, R.L., Glendinning, S.G., Glenzer, S.H., Haan, S.W., Kauffman, R.L., Landen, O.L. & Suter, L.J. (2004). The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339491.CrossRefGoogle Scholar
Martin, A.J., Simms, R.J. & Jacobs, R.B. (1988). Beta energy driven uniform deuterium-tritium ice layer in reactor-size cryogenic inertial fusion targets. J. Vac. Sci Technol. A 6, 18851888.CrossRefGoogle Scholar
Martin, M., Gauvin, C., Choux, A., Baclet, P. & Pascal, G. (2006). The cryogenic target for ignition on the LMJ: Useful tools to achieve nominal temperature and roughness conditions of the DT solid layer. Fusion Sci. Technol. 49, 600607.CrossRefGoogle Scholar
Martin, M., Gauvin, C., Choux, A., Baclet, P. & Pascal, G. (2007). A way to reach the cryogenic's temperature and roughness requirements for the laser megajoule facility. Fusion Sci. Technol. 51, 747752.CrossRefGoogle Scholar
McCrory, R.L., Meyerhofer, D.D., Loucks, S.J., Skupsky, S., Betti, R., Boehly, T.R., Collins, T.J.B., Craxton, R.S., Delettrez, J.A., Edgell, D.H., Epstein, R., Fletcher, K.A., Freeman, C., Frenje, J.A., Glebovi, V.Y., Concharov, V.N., Harding, D.R., Igumenshchev, I.V., Keck, R.L., Kilkenny, J.D., Knauer, J.P., Li, C.K., Marciante, J., Marozas, J.A., Marshall, F.J., Maximov, A.V., McKenty, P.W., Morse, S.F.B., Myatt, J., Padalino, S., Petrasso, R.D., Radha, P.B., Regan, S.P., Sangster, T.C., Seguin, F.H., Seka, W., Smalyuk, V.A., Soures, J.M., Stoeckl, C., Yaakobi, B. & Zuegel, J.D. (2007). Progress in direct-drive inertial confinement fusion research at the Laboratory for Laser Energetics. Eur. Phys. J. D 44, 233238.CrossRefGoogle Scholar
McEachern, R.L., Moore, C.E. & Wallace, R.J. (1995). The design, performance, and application of an atomic force microscope-based profilometer. J. Vac. Sci. Technol. A 13, 983989.CrossRefGoogle Scholar
McElfresh, M., Gunther, J., Alford, C., Fought, E. & Cook, R. (2006). Fabrication of beryllium capsules with copper-doped layers for NIF targets: A progress report. Fusion Sci. Technol. 49, 786795.CrossRefGoogle Scholar
McQuillan, B.W., Nikroo, A., Steinman, D.A., Elsner, F.H., Czechowicz, D.G., Hoppe, M.L., Sixtus, M. & Miller, W.J. (1997). The PαMS/GDP process for production of ICF target mandrels. Fusion Technol. 31, 381384.CrossRefGoogle Scholar
Montesanti, R.C., Johnson, R.A., Mapoles, E.R., Atkinson, D.P., Hughes, J.D. & Reynolds, J.L. (2006). Phase-shifting diffraction interferometer for inspecting NIF ignition-target shells. Proceedings of the American Society for Precision Engineering 2006 Annual Meeting 39, 1518.Google Scholar
Montgomery, D.S., Nobile, A. & Walsh, P.J. (2004). Characterization of National Ignition Facility cryogenic beryllium capsules using X-ray phase contrast imaging. Rev. Sci. Instrum. 75, 39863988.CrossRefGoogle Scholar
Moody, J.D., Kozioziemski, B.J., London, R.L., Montgomery, D.S., Sanchez, J.J., Sater, J.D., Bittner, D.N., Burmann, J.A., Jones, R.L., Pipes, J. & Stefanescu, D. (2006). Status of cryogenic layering for NIF ignition targets. J. de Physique IV 133, 863867.Google Scholar
Moses, E.I. & Wuest, C.R. (2005). The national ignition facility: Laser performance and first experiments. Fusion Sci. Technol. 47, 314322.CrossRefGoogle Scholar
Moses, E.I., Bonanno, R.E., Haynam, C.A., Kauffman, R.L., MacGowan, B.J., Patterson, R.W., Sawicki, R.H. & Van Wonterghem, B.M. (2007). The national ignition facility: Path to ignition in the laboratory. Eur. Phys. J. D 44, 215218.CrossRefGoogle Scholar
Moses, E.I., Miller, G.H. & Kauffman, R.L. (2006). The ICF status and plans in the United States. J. de Physique IV 133, 916.Google Scholar
Nikroo, A., Bousquet, J., Cook, R., McQuillan, B.W., Paguio, R. & Takagi, M. (2004). Progress in 2 mm glow discharge polymer mandrel development for NIF. Fusion Sci. Technol. 45, 165170.CrossRefGoogle Scholar
Nikroo, A., Xu, H.W., Moreno, K.A., Youngblood, K.P., Cooley, J., Alford, C.S., Letts, S.A. & Cook, R.C. (2007). Investigation of deuterium permeability of sputtered beryllium and graded copper-doped beryllium shells. Fusion Sci Technol. 51, 553558.CrossRefGoogle Scholar
Nobile, A., Nikroo, A., Cook, R.C., Cooley, J.C., Alexander, D.J., Hackenberg, R.E., Necker, C.T., Dickerson, R.M., Kilkenny, J.L., Bernat, T.P., Chen, K.C., Xu, H., Stephens, R.B., Huang, H., Haan, S.W., Forsman, A.C., Atherton, L.J., Letts, S.A., Bono, M.J. & Wilson, D.C. (2006). Status of the development of ignition capsules in the US effort to achieve thermonuclear ignition on the national ignition facility. Laser Part. Beams 24, 567578.CrossRefGoogle Scholar
Sater, J., Kozioziemski, B., Collins, G.W., Mapoles, E.R., Pipes, J., Burmann, J. & Bernat, T.P. (1999). Cryogenic D-T fuel layers formed in 1 mm spheres by beta-layering. Fusion Technol. 35, 229233.CrossRefGoogle Scholar
Schein, J., Jones, O., Rosen, M., Dewald, E., Glenzer, S., Gunther, J., Hammel, B., Landen, O., Suter, L. & Wallace, R. (2007). Demonstration of enhanced radiation drive in hohlraums made from a mixture of high-Z wall materials. Phys. Rev. Lett. 98, 175003/1–175003/4.CrossRefGoogle Scholar
Souers, P.C. (1986). Hydrogen Properties for Fusion Energy. Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Stephens, R.B., Olson, D., Huang, H. & Gibson, J.B. (2004). Complete surface mapping of ICF shells. Fusion Sci. Technol. 45, 210213.CrossRefGoogle Scholar
Strobel, G.L., Haan, S.W., Munro, D.H. & Dittrich, T.R. (2004). Design of a 250 eV cryogenic ignition capsule for the national ignition facility. Phys. Plasmas 11, 42614266.CrossRefGoogle Scholar
Takagi, M., Saito, K., Frederick, C., Nikroo, A. & Cook, R. (2007). Fabrication and attachment of polyimide fill tubes to plastic NIF capsules. Fusion Sci. Technol. 51, 638642.CrossRefGoogle Scholar
Theobald, M., Baudin, F., Barnouin, J., Peche, E., Bednarczyk, S., Legaie, O. & Baclet, P. (2007). Graded germanium-doped CHx microshells meeting the specifications of the Megajoule Laser cryogenic target. Fusion Sci. Technol. 51, 586592.CrossRefGoogle Scholar
Wilkens, H.L., Nikroo, A., Wall, D.R. & Wall, J.R. (2007). Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facility. Phys. Plasmas 14, 056310/1–056310/6.CrossRefGoogle Scholar
Xu, H.W., Alford, C.S., Cooley, J.C., Dixon, L.A., Hackenberg, R.E., Letts, S.A., Moreno, K.A., Nikroo, A., Wall, J.R. & Youngblood, K.P. (2007). Beryllium capsule coating development for NIF targets. Fusion Sci. Technol. 51, 547552.CrossRefGoogle Scholar
Youngblood, K.P., Moreno, K.A., Nikroo, A., Huang, H., Lee, Y.T., Letts, S.A., Alford, C.S. & Buckley, S.R. (2007). Removal of GDP mandrels from sputter-coated beryllium capsules for NIF targets. Fusion Sci. Technol. 51, 572575.CrossRefGoogle Scholar