Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T07:59:19.311Z Has data issue: false hasContentIssue false

Model for the Stark broadening of plasmas created by laser interaction with matter

Published online by Cambridge University Press:  09 March 2009

A. Calisti
Affiliation:
Équipe Diagnostic dans les Gaz et les Plasmas, URA 773 Université de Provence, Centre St. Jérôme, case 232, Marseille Cedex 20, France
L. Godbert
Affiliation:
Équipe Diagnostic dans les Gaz et les Plasmas, URA 773 Université de Provence, Centre St. Jérôme, case 232, Marseille Cedex 20, France
T. Meftah
Affiliation:
Équipe Diagnostic dans les Gaz et les Plasmas, URA 773 Université de Provence, Centre St. Jérôme, case 232, Marseille Cedex 20, France
C. Mossé
Affiliation:
Équipe Diagnostic dans les Gaz et les Plasmas, URA 773 Université de Provence, Centre St. Jérôme, case 232, Marseille Cedex 20, France
R. Stamm
Affiliation:
Équipe Diagnostic dans les Gaz et les Plasmas, URA 773 Université de Provence, Centre St. Jérôme, case 232, Marseille Cedex 20, France
B. Talin
Affiliation:
Équipe Diagnostic dans les Gaz et les Plasmas, URA 773 Université de Provence, Centre St. Jérôme, case 232, Marseille Cedex 20, France

Abstract

A model for the Stark broadening of ions in a high-density plasma created by laser has been developed by taking account of the full effect of a two-component plasma. One of the objectives of the work was to include the effect of ion dynamics in an efficient way. This has been achieved by using a stochastic process for mixing the different components that constitute a line profile. With the systematic use of fast algorithms, a code has been developed with the ability of treating complex atomic structures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boerker, D. 1993 In Spectral Line Shapes, Vol. 7, Stamm, R. and Talin, B., eds. (Nova Science Publishers, New York).Google Scholar
Calisti, A. et al. 1990 Phys. Rev. A 42, 5433.CrossRefGoogle Scholar
Calisti, A. et al. 1991 In Radiative Properties of Hot Dense Matter, Goldstein, W., Hooper, C., Gauthier, J.C., Seely, J., and Lee, R.W., eds. (World Scientific, Singapore), p. 64.Google Scholar
Calisti, A. et al. 1994 J. Quant. Spectrosc. Radiat. Transfer., 51, 59.CrossRefGoogle Scholar
Griem, H.R. 1974 Spectral Line Broadening by Plasmas (Academic Press, New York).Google Scholar
Griem, H.R. 1993 In Spectral Line Shapes, Vol. 7, Stamm, R. and Talin, B., eds. (Nova Science Publishers, New York).Google Scholar
Hammel, B.A. et al. 1993 Phys. Rev. Lett. 70, 1263.CrossRefGoogle Scholar
Kubo, R. 1962 In Fluctuation, Relaxation and Resonance in Magnetic Systems, Ter Haar, D., ed. (Oliver and Boyd, Edinburgh).Google Scholar
Leboucher-Dalimier, E. et al. 1993 Phys. Rev. E 47, R1467.CrossRefGoogle Scholar
Mancini, R.C. et al. 1994 J. Quant. Spectrosc. Radiat. Transfer., 51, 201.CrossRefGoogle Scholar
Stamm, R. et al. 1986 Phys. Rev. A 34, 4144.CrossRefGoogle Scholar