Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T06:06:20.114Z Has data issue: false hasContentIssue false

Low velocity ion slowing down in a strongly magnetized plasma target

Published online by Cambridge University Press:  08 December 2009

C. Deutsch*
Affiliation:
LPGP (UMR-CNRS 8578), Université Paris XI, Orsay, France
R. Popoff
Affiliation:
LPGP (UMR-CNRS 8578), Université Paris XI, Orsay, France
*
Address correspondence and reprint requests to: C. Deutsch, LPGP (UMR-CNRS 8578), Université Paris XI, 91405 Orsay, France. E-mail: [email protected]

Abstract

Ion projectile stopping at velocity smaller than target electron thermal velocity in a strong magnetic field is investigated within a novel diffusion formulation, based on Green-Kubo integrands evaluated in magnetized one component plasma models, respectively, framed on target ions and electron. Analytic expressions are reported for slowing down orthogonal and parallel to an arbitrary large magnetic field, which are free from the usual uncertainties plaguing the standard perturbative derivations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cereceda, C., Deutsch, C., DePeretti, M., Sabatier, M. & Nersisyan, H.B. (2000). Dielectric function and stopping power of a dense magnetized plasmas. Phys. Plasmas 7, 2884.CrossRefGoogle Scholar
Cereceda, C., DePeretti, M. & Deutsch, C. (2005). Stopping power for arbitrary angles between test particle velocity and magnetic field. Phys. Plasmas 12, 022102.CrossRefGoogle Scholar
Cohen, J.S. & Suttorp, L.G. (1984). The effect of dynamical screening on seld-diffusion in a dense magnetized plasma. Physica 126A, 308327.CrossRefGoogle Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1996). The interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 24832486.CrossRefGoogle ScholarPubMed
Deutsch, C. (2003). Fast ignition schemes for inertial confinement fusion. Eur. Phys. J. Appl. Phys. 24, 95.CrossRefGoogle Scholar
Deutsch, C. (1986). Inertial confinement driven fusion by intense ion beams. Ann. Phys. Paris XI, 1111.CrossRefGoogle Scholar
Deutsch, C. & Maynard, G. (2000). Stopping of point like ions in a dense electron fluid. Recent Res. Devel. Plasmas 1, 123.Google Scholar
Dufty, J.W. & Berkovsky, M. (1995). Electronic stopping in the low velocity limit. Nucl. Instr. Meth. Phys. Res. B96, 626632.CrossRefGoogle Scholar
Dufty, J.W., Talin, B. & Calisti, A. (2004). High Z ions in hot, dense matter. Adv. Qtum. Chem. 47, 293305.Google Scholar
Goldston, R.J. & Rutherford, P.H. (1995). Introduction to Plasma Physics. Philadelphia: Institute of Physics.CrossRefGoogle Scholar
Killian, T.C. (2007). Ultracold neutral plasmas. Sci. 316, 5825.Google ScholarPubMed
Krushelnick, K., Ting, A., Moore, C., Burris, H.R., Esarey, E., Sprangle, P. & Baine, M. (1997). Plasma channel formation and guiding during high intensity short pulse laser plasma experiments. Phys. Rev. Lett. 78, 4047–4010.CrossRefGoogle Scholar
Marchetti, M.C., Kikpatrick, T.R. & Dorfman, J.R. (1987). Hydrodynamic theory of electron-transport in a strong magnetic field. J. Stat. Phys. 46, 679708.CrossRefGoogle Scholar
Marchetti, M.C., Kirkpatrick, T.R. & Dorfman, J.R. (1984). Anomalous diffusion of charged particles in a strong magnetic field. Phys. Rev. A29, 29602962.CrossRefGoogle Scholar
Montgomery, D., Liu, C.S. & Vahala, G. (1972). Bohmlike diffusion in strongly magnetized plasma. Phys. Fluids 15, 81.Google Scholar
Nersisyan, H.B., Toepffe, C. & Zwicknagel, G. (2007). Interaction between charged particles in a magnetic field. New York: Springer-Verlag.Google Scholar
Paul, H. & Schinner, A. (2005). Judging the reliability of stopping power and programs for protons and alpha particles using statistical methods. Nucl. Instr. Meth. Phys. Res. B227, 461470.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Winske, D. & Gary, S.P. (2007). Hybrid simulations of debris-ambient ion interactions in astrophysical explosions. J. Geophys. Res. 112, A10303.Google Scholar