Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T05:17:57.740Z Has data issue: false hasContentIssue false

Long Ion Mean-Free Path and Nonequilibrium Radiation Effects on High-Aspect-Ratio Laser-Driven Implosions

Published online by Cambridge University Press:  09 March 2009

Takashi Yabe
Affiliation:
Department of Electronics, Gunma University, Tenjin-chou, Kiryu, Gunma 376, Japan
Kazuo A. Tanaka
Affiliation:
Institute of Laser Engineering, Osaka University, Yamada-Oka 2–6, Suita, Osaka 565

Abstract

The implosion dynamics of experiments with high-aspect-ratio laser-driven targets are re-examined by taking account of long ion-mean-free paths. The mean-free path is found to be comparable to the fuel size and this can cause a significant departure from a fluid-like description. One of such effects stemming from the long ion-mean-free path; namely, real viscosity, seriously changes the results; the compression ratio becomes 5 times smaller with this real viscosity. In addition to this, inclusion of non-LTE (local thermodynamic equilibrium) atomic process is shown to critically determine the implosion dynamics because of bound-free opacity associated with a small fraction of hydrogen-like ions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afanas'ev, Yu. F. et al. 1976 Pis'ma Zh. Eksp. Teor. Fiz. 23, 617 [JETP Lett. 23, 566].Google Scholar
Anisimov, S. I. private communications, 1977, Landau Institute of Physics, USSR.Google Scholar
Arnold, W. R. et al. 1954 Phys. Rev. 93, 483.CrossRefGoogle Scholar
Bayer, C. et al. 1984 Nucl. Fusion 24, 573.CrossRefGoogle Scholar
Braginskii, S. I. 1965 in Reviews of Plasma Physics, ed. by Leontovich, M. A. (Consultants Bureau, New York) Vol. 1, p. 205.Google Scholar
Colombant, D.private communications, 1981, Naval Research Laboratory, USA.Google Scholar
Dawson, J. M., Furth, H. P. & Tenney, F. H. 1971 Phys. Rev. Lett. 26, 1156.CrossRefGoogle Scholar
Freeman, J. R., Clauser, M. J. & Thompson, S. L. 1977 Nucl. Fusion 17, 223.CrossRefGoogle Scholar
Kidder, R. 1976 Nucl. Fusion 16, 3.CrossRefGoogle Scholar
Neumann, J.von & Richtmyer, R. D. 1950 J. Appl. Phys. 21, 232.CrossRefGoogle Scholar
Niu, K. 1986 AIP Conf. Proc. 152, 454.CrossRefGoogle Scholar
Nuckolls, J. et al. 1972 Nature 239, 139.CrossRefGoogle Scholar
Petchek, A. G. & Henderson, D. B. 1979 Nucl. Fusion 19, 1678.CrossRefGoogle Scholar
Richardson, M. C. et al. 1986 Phys. Rev. Lett. 56, 2048.CrossRefGoogle Scholar
Tidman, D. A. & Krall, N. A. 1971 Shock Waves in Collisionless Plasmas (Wiley-Interscience, New York).Google Scholar
Yamanaka, C. et al. 1986 Phys. Rev. Lett. 56, 1575.CrossRefGoogle Scholar
Yabe, T. et al. 1983 Jpn. J. Appl. Phys. 22, L88.Google Scholar
Yabe, T. 1984a Jpn. J. Appl. Phys. 23, L57.CrossRefGoogle Scholar
Yabe, T. et al. 1984b in Laster Interaction and Related Plasma Phenomena, ed. by Hora, H. and Miley, G. H. (Plenum) Vol 6, p. 863.Google Scholar
Yabe, T. & Yamanaka, C. 1985 Comm. Plasma Phys. Contr. Fusion 9, 169 and references therein.Google Scholar