Article contents
The laser-matter interaction meets the high energy physics: Laser-plasma accelerators and bright X/γ-ray sources
Published online by Cambridge University Press: 30 August 2005
Abstract
Laser matter interaction in the regime of super-intense and ultra-short laser pulses is discovering common interests and goals for plasma and elementary particles physics. Among them, the electron laser wakefield acceleration and the X/γ tunable sources, based on the Thomson scattering (TS) of optical photons on accelerated electrons, represent the most challenging applications. The activity of the Intense Laser Irradiation Laboratory in this field will be presented.
- Type
- Research Article
- Information
- Copyright
- © 2005 Cambridge University Press
Footnotes
This paper was presented at the 28th ECLIM
conference in Rome, Italy.
References
REFERENCES
Alesini, D.,
Bertolucci, S.,
Biagini, M.E.,
Biscari, C.,
Boni, R.,
Boscolo, M.,
Castellano, M.,
Clozza, A.,
Di Pirro, G.,
Drago, A.,
Esposito, A.,
Ferrario, M.,
Fusco, V.,
Gallo, A.,
Ghigo, A.,
Guiducci, S.,
Incurvati, M.,
Ligi, C.,
Marcellini, F.,
Migliorati, M.,
Milardi, C.,
Mostacci, A.,
Palumbo, L.,
Pellegrino, L.,
Preger, M.,
Raimondi, P.,
Ricci, R.,
Sanelli, C.,
Serio, M.,
Sgamma, F.,
Spataro, B.,
Stecchi, A.,
Stella, A.,
Tazzioli, F.,
Vaccarezza, C.,
Vescovi, M.,
Vicario, C.,
Zobov, M.,
Alessandria, F.,
Bacci, A.,
Bonifacio, R.,
Boscolo, I.,
Broggi, S.Cialdi,
C., DeMartinis,
D., Giove,
C., Maroli,
V., Petrillo,
N., Piovella,
R., Pozzoli,
F., Romè,
M., Serafini,
L., Bottigli,
U., Golosio,
B., Oliva,
P., Poggiu,
A., Stumbo,
S., Barbini,
A., Baldeschi,
W., Cecchetti,
C.A., Galimberti,
M., Giulietti,
A., Giulietti,
D., Gizzi,
L.A., Koester,
P., Labate,
L., Laville,
S., Rossi,
A., &Tomassini,
P.
(2004).
Design Study for Advanced Acceleration Experiments and Monochromatic
X-ray Production
@ SPARC, 9th European Particle Accelerator Conference, Lucerne,
July, 2004.
Balakirev, V.A.,
Karas, I.V.,
Karas, V.I.,
Levchenko, V.D. &
Bornatici, M.
(2004).
Charged particle acceleration by an intense wake-field excited in
plasmas by either laser pulse or relativistic electron bunch.
Laser Part. Beams
22,
383–392.Google Scholar
Breschi, E.,
Borghesi, M.,
Campbell, D.H.,
Galimberti, M.,
Giulietti, D.,
Gizzi, L.A.,
Romagnani, L.,
Schiavi, A. &
Willi, O.
(2004).
Spectral and angular characterisation of laser produced proton beams
from dosimetric measurements.
Laser Part. Beams
22,
393–397.Google Scholar
Bulanov, S.V.,
Naumova, N.,
Pegoraro, F. &
Sakai, J.
(1998).
Particle injection into the wave acceleration phase due to nonlinear
wake wave breaking.
Phys. Rev. E
58,
R5257.Google Scholar
Dorchies, F.,
Amiranoff, F.,
Baton, S.,
Bernard, D.,
Cros, B.,
Descamps, D.,
Jacquet, F.,
Malka, V.,
Marquès, J.R.,
Matthieussent, G.,
Miné, Ph.,
Modena, A.,
Mora, P.,
Morillo, J.,
Najmudin, Z. &
Solodov, A.
(1999).
Electron acceleration in laser wakefield experiment at Ecole
Polytechnique.
Laser Part. Beams
17,
299–305.Google Scholar
Faure, J.,
Gilnec, Y.,
Pukhov, A.,
Kiselev, S.,
Gordienko, S.,
Lefebvre, E.,
Rousseau, J.P.,
Burgy, F. &
Malka, V.
(2004).
A laser-plasma accelerator producing monoenergetic electron
beams.
Nature
431,
541–544.Google Scholar
Geddes, C.G.R.,
Toth, C.S.,
van Tilborg, J.,
Esarey, E.,
Schroeder C.B., Bruhwller,
D., Nieter,
C., Cary,
J., &Leemans,
W.P.
(2004).
High-quality electron beams from a laser wakefield accelerator using
plasma-channel guiding.
Nature
431,
538–541.Google Scholar
Giulietti, D.
(2004).
The PLASMONX project and its applications in Medical Physics.
The Congress of Società Italiana di Fisica, Brescia,
2004.
Bologna:
Societs Italiana di Fisica.
Giulietti, D.,
Galimberti, M.,
Giulietti, A.,
Gizzi, L.A.,
Numico, R.,
Tomassini, P.,
Malka, V.,
Fritzler, S.,
Pittman, M.,
Ta Phouc, K. &
Pukhov, A.
(2002).
Production of ultracollimated bunches of multi-MeV electrons by 35
fs laser pulses propagating in exploding-foil plasmas.
Phys. Plasmas
9,
3655.Google Scholar
Hoffmann, D.H.H.,
Blazevic, A.,
Ni, P.,
Rosmej, O.N.,
Roth, M.,
Tahir, N.A.,
Tauschwitz, A.,
Udrea, S.,
Varentsov, D.,
Weyrich, K. &
Maron, Y.
(2005).
Present and future perspectives for high energy density physics with
intense heavy ion and laser beams.
Laser Part. Beams
23,
47–53.Google Scholar
Hora, H.,
Hoelss, M.,
Scheid, W.,
Wang, J.M.,
Ho, Y.K.,
Osman, F. &
Castillo, R.
(2000).
Principle of high accuracy for the nonlinear theory of the
acceleration of electrons in a vacuum by lasers at relativistic
intensities.
Laser Part. Beams
18,
135–144.Google Scholar
Labate, L.,
Galimberti, M.,
Giulietti, A.,
Giulietti, D.,
Gizzi, L.A.,
Tomassini, P. &
Di Cocco, G.
(2002).
A laser-plasma source for CCD calibration in the soft X-ray
range.
Nucl. Instr. Meth. A
495,
148.Google Scholar
Leemans, W.P.,
Clayton, C.E.,
Marsh, K.A. &
Joshi, C.
(1991).
Stimulated compton scattering from preformed underdense
plasmas.
Phys. Rev. Lett.
67,
1434–1437.Google Scholar
Malka, V.
(1998).
Utilisation du spectromètre à électrons
à 200 MeV,
Note LULI-LOA, August.
Malka, V. &
Fritzler, S.
(2004).
Electrons and protons beams produced by ultra short laser pulses in
the relativistic regime.
Laser Part. Beams
22,
399–405.Google Scholar
Malka, V.
(2002).
Charged particle source produced by laser–plasma interaction
in the relativistic regime.
Laser Part. Beams
20,
217–221.Google Scholar
Mangles, S.P.D.,
Murphy, C.D.,
Najmudin, Z.,
Thomas, A.G.R.,
Collier, J.L.,
Dangor, A.E.,
Divall, E.J.,
Foster, P.S.,
Gallacher, J.G.,
Hooker, C.J.,
Jaroszynski, D.A.,
Langley, A.J.,
Mori, W.B.,
Norreys, P.A.,
Tsung, F.S.,
Viskup, R.,
Walton, B.R. &
Krushelnick, K.
(2004).
Monoenergetic beams of relativistic electrons from intense
laser-plasma interactions.
Nature
431,
535–538.Google Scholar
Nakajima, K.
(2000).
Particle acceleration by ultraintense laser interactions with beams
and plasmas.
Laser Part. Beams
18,
519–528.Google Scholar
Reitsma, A.J.W. &
Jaroszynki, D.A.
(2004).
Coupling of longitudinal and transverse motion of accelerated laser
pulses in the relativistic regime.
Laser Part. Beams
22,
407–413.Google Scholar
Strickland, D. &
Mourou, G.
(1985).
Compression of amplified chirped optical pulses.
Opt. Comm.
56,
219–221.Google Scholar
Tajima, T. &
Dawson, J.M.
(1979).
Laser electron accelerator.
Phys. Rev. Lett
43,
267.Google Scholar
Teychenné, D.
(1994).
Accélération de particules dans un plasma par une onde
de sillage provoquée par une brève impulsion laser de forte
intensité.
Doctorial Thesis,
Paris, France:
University of Paris VI.
Tomassini, P.,
Galimberti, M.,
Giulietti, A.,
Giulietti, D.,
Gizzi, L.A. &
Labate, L.
(2002).
IPCF Report 2002.
http://ilil.ipcf.cnr.it.
Tomassini, P.,
Galimberti, M.,
Giulietti, A.,
Giulietti, D.,
Gizzi, L.A. &
Labate, L.
(2003a).
Spectroscopy of laser-plasma accelerated electrons: A novel concept
based on Thomson scattering.
Phys. Plasmas
10,
917.Google Scholar
Tomassini, P.,
Galimberti, M.,
Giulietti, A.,
Giulietti, D.,
Gizzi, L.A.,
Labate, L. &
Pegoraro, F.
(2003b).
Production of high-quality electron beams in numerical experiments
of laser wakefield acceleration with longitudinal wave breaking.
Phys. Rev.
6,
121301.Google Scholar
Tomassini, P.,
Galimberti, M.,
Giulietti, A.,
Giulietti, D.,
Gizzi, L.A.,
Labate, L. &
Pegoraro, F.
(2004).
Laser wake field acceleration with controlled self-injection by
sharp density transition.
Laser Part. Beams
22,
423–429.Google Scholar
- 16
- Cited by