Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T03:17:01.196Z Has data issue: false hasContentIssue false

Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas

Published online by Cambridge University Press:  30 August 2005

JUAN C. FERNÁNDEZ
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
B. MANUEL HEGELICH
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
JAMES A. COBBLE
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
KIRK A. FLIPPO
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
SAMUEL A. LETZRING
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
RANDALL P. JOHNSON
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
D. CORT GAUTIER
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
TSUTOMU SHIMADA
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
GEORGE A. KYRALA
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
YONGQIANG WANG
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
CHRIS J. WETTELAND
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
JÖRG SCHREIBER
Affiliation:
Max Planck Institute for Quantum Optics, Garching, Germany

Abstract

This new project relies on the capabilities collocated at Los Alamos in the Trident laser facility of long-pulse laser drive, for laser-plasma formation, and high-intensity short-pulse laser drive, for relativistic laser-matter interaction experiments. Specifically, we are working to understand quantitatively the physics that underlie the generation of laser-driven MeV/nucleon ion beams, in order to extend these capabilities over a range of ion species, to optimize beam generation, and to control those beams. Furthermore, we intend to study the interaction of these novel laser-driven ion beams with dense plasmas, which are relevant to important topics such as the fast-ignition method of inertial confinement fusion (ICF), weapons physics, and planetary physics. We are interested in irradiating metallic foils with the Trident short-pulse laser to generate medium to heavy ion beams (Z = 20–45) with high efficiency. At present, target-surface impurities seem to be the main obstacle to reliable and efficient acceleration of metallic ions in the foil substrate. In order to quantify the problem, measurements of surface impurities on typical metallic-foil laser targets were made. To eliminate these impurities, we resorted to novel target-treatment techniques such as Joule-heating and laser-ablation, using a long-pulse laser intensity of ∼ 1010 W/cm2. Our progress on this promising effort is presented in this paper, along with a summary of the overall project.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was presented at the 28th ECLIM conference in Rome, Italy.

References

REFERENCES

Chirila, C.C., Joachain, C.J., Kylstra, N.J. & Potvliege, R.M. (2004). Interaction of ultra intense laser pulses with relativistic ions. Laser Part. Beams 22, 203206.Google Scholar
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernández, J., Gauthier, J.-C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pèpin, H. & Renard-Legalloudec, N. (2004). Ultralow emittance, multi-mev proton beams from a laser virtual-cathode plasmaaccelerator. Phys. Rev. Lett. 92, 204801 (14).Google Scholar
Fuchs, J. (2004). Phys. Rev. Lett. (submitted).
Gericke, D.O. & Schlanges, M. (2003). Stopping power for highly charged beam ions in dense plasmas. Phys. Rev. E 67, 037401.Google Scholar
Gericke, D.O. (2003). Stopping power for strong beam–plasma coupling. Laser Part. Beams 20, 471.Google Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.CrossRefGoogle Scholar
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89, 085002 (14).Google Scholar
Pegoraro, F., Atzeni, S., Borghesi, M., Bulanov, S., Esirkepov, T., Honrubia, J., Kato, Y., Khoroshkov, V., Nishihara, K., Tajima, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high-power laser-plasma interactions and their applications. Laser Part. Beams 22, 1924.Google Scholar
Renner, O., Uschmann, I. & Forster, E. (2004). Diagnostic potential of advanced X-ray spectroscopy for investigation of hot dense plasmas. Laser Part. Beams 22, 2528.Google Scholar
Shorokhov, O. & Pukhov, A. (2004). Ion acceleration in overdense plasma by short laser pulse. Laser Part. Beams 22, 175181.CrossRefGoogle Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.CrossRefGoogle Scholar