Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T08:42:30.620Z Has data issue: false hasContentIssue false

Laser plasma interaction in copper nano-particle targets

Published online by Cambridge University Press:  29 July 2008

S. Chaurasia*
Affiliation:
Laser and Neutron Physics Section, Physics Group, Bhabha Atomic Research Centre, Mumbai, India
D.S. Munda
Affiliation:
Laser and Neutron Physics Section, Physics Group, Bhabha Atomic Research Centre, Mumbai, India
P. Ayyub
Affiliation:
Department of Condensed Matter Physics, Tata Institute of Fundamental Research, Mumbai, India
N. Kulkarni
Affiliation:
Department of Condensed Matter Physics, Tata Institute of Fundamental Research, Mumbai, India
N.K. Gupta
Affiliation:
Laser and Neutron Physics Section, Physics Group, Bhabha Atomic Research Centre, Mumbai, India
L.J. Dhareshwar
Affiliation:
Laser and Neutron Physics Section, Physics Group, Bhabha Atomic Research Centre, Mumbai, India
*
Address correspondence and reprint requests to: S. Chaurasia, Laser & Neutron Physics Section, Purnima Building, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. E-mail: [email protected]

Abstract

In this paper, we present the results of studies on ion emission characteristics of a laser plasma produced from a copper nano-particle layer of 1–3 µm thickness coated over polished surface of a solid copper target. Laser intensity of 1013–1014 W/cm2 was produced on the targets by a 2 J Nd:glass laser having a variable pulse duration of 300–800 ps. Nano-particle size was in the range of 15–25 nm. Ion emission from the nano-particle plasma was compared with plasma generated from a polished copper target. Ion emission from the nano-structured target was observed to depend on the polarization of the incident laser beam. This effect was stronger for a shorter laser pulse. X-ray emission was measured in the soft and hard X-ray region (0.7 to 8 keV) using various X-ray filters. A nano-particle coated target is found to yield a larger flux as well as velocity of ions as compared to polished target when the laser polarization is parallel to the plane containing target normal and detector axis. However, no X-ray enhancement has been observed in the wavelength range 1.5 to 20 Å.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ayyub, P., Chandra, R., Taneja, P., Sharma, A.K. & Pinto, R. (2001). Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures. Appl. Phys. A 73, 6773.CrossRefGoogle Scholar
Chakera, J.A., Arora, V., Sailaja, S., Kumbhare, S.R., Naik, P.A., Gupta, P.D., Gupta, N.K. & Godwal, B.K. (2003). Dependence of soft X-ray conversion on atomic composition in laser produced plasma of gold-copper mix Z targets. Appl. Phys. Lett. 83, 2729.CrossRefGoogle Scholar
Chaurasia, S., Dhareshwar, L.J., Kumar, M., Bajaj, P.N., Badziak, J., Wolowski, J., Kasperczuk, A., Pisarczyk, T., Ryc, L., Rosinski, M., Parys, P., Pisarczyk, P., Foldes, I., Suta, T., Borielli, A., Torrisi, L., Mezzasalma, A., Laska, L., Ullschmied, J., Krousky, E., Masek, K. & Pfeifer, M. (2007 a). Stable and enhanced acceleration of laser ablated plastic target foils with high Z dopant. In Proc. of 6th Conference of Asia Plasma and Fusion Association. Gandhinagar, India: Institute of Plasma Research.Google Scholar
Chaurasia, S., Munda, D.S., Murali, C.G., Gupta, N.K. & Dhareshwar, L.J. (2007 b). X-ray and ion measurements in laser produced plasma from gold-copper alloy targets. J. Appl. Phys. 103, 13307/17.Google Scholar
Dhareshwar, L.J. & Chaurasia, S. (2007). Laser plasma interaction in solid metal, mixed metal alloy and metal nano-particle coated targets. J. Phys. 112, 32050.Google Scholar
Dhareshwar, L.J. & Pant, H.C. (1993). Study of ablation profile smoothing and stability of laser driven high Z doped plastic foil targets. In Proceedings of Fourteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research. Wurzburg, Germany: IAEA.Google Scholar
Dhareshwar, L.J., Naik, P.A. & Pant, H.C. (1986). Enhancement of ablation smoothing in laser irradiated, high Z coated thin foil targets. Pramana. J. Phys. 27, 435441.CrossRefGoogle Scholar
Ditmire, T., Smith, R.A., Tisch, J.W.G. & Hutchinson, M.H.R. (1997 a). High intensity laser absorption by gases of atomic clusters. Phys. Rev. Lett. 78, 31213124.CrossRefGoogle Scholar
Ditmire, T., Tisch, W.G., Springate, E., Mason, M.B., Hay, N., Smith, R.A., Marangos, J. & Hutchinson, M.H.R. (1997 b). High Energy ions produced in explosions of superheated clusters. Nature 386, 5456.CrossRefGoogle Scholar
Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Gasilov, S.V., Stagira, S., Calegari, F., Nisoli, M., De Silvestri, S., Poletto, L., Villoresi, P. & Andreev, A.A. (2007). X-ray spectroscopy observation of fast ions generation in plasma produced by short low-contrast laser pulse irradiation of solid targets. Laser Part. Beams 25, 267–75.CrossRefGoogle Scholar
Gupta, N.K. & Godwal, B.K. (2001). Effects of various parameters on numerical simulations of inertial confinement fusion hohlraum and radiation hydrodynamics. Laser Part. Beams 19, 259265.Google Scholar
Hegazy, H., Allam, A.H., Chaurasia, S., Dhareshwar, L.J., El-Sherbini, T.H.M., Kunze, H.J., Mank, G., Mcdaniel, D.H. & Wolowski, J. (2007). Joint experiments on X-ray/Particle emission from plasmas produced by laser irradiating nano structured targets. In Proc. of 17th Technical Meeting on Research using Small Fusion Devices. Lisbon, Portugal: IAEA.Google Scholar
Holkundkar, A.R. & Gupta, N.K. (2007). Role of radial non-uniformities in the interaction of intense laser with atomic clusters. Phys. Plasmas 15, 13105/19.Google Scholar
Koller, L., Schumaker, M., Kohn, J., Teuber, S., Tiggesbaumker, J. & Meiwes-Broer, K.H. (1999). Plasmon enhanced multi ionization of small metal clusters in strong femtosecond laser fields. Phys. Rev. Lett. 82, 37833786.CrossRefGoogle Scholar
Krasa, J., Lorusso, A., Doria, D., Belloni, F., Nassisi, V. & Rohlena, K. (2005). Time-of-flight profile of multiply-charged ion currents produced by a pulse laser. Plasma Phys. Contr. Fusion 47, 13391349.CrossRefGoogle Scholar
Kulcsar, G., Almawlavi, D., Budnik, F.W., Herman, P.R., Moskovits, M., Zhao, L. & Marjoribanks, R.S. (2000). Intense picosecond X-ray pulses from laser plasmas by use of nanostructured “velvet” targets. Phys. Rev. Lett. 84, 51495152.CrossRefGoogle ScholarPubMed
Kumarappan, V., Krishnamurthy, M. & Mathur, D. (2003). Asymmetric emission of high energy electrons in the two dimensional hydrodynamic expansion of large Xenon clusters irradiated by intense laser fields. Phys. Rev. A 67, 43204/1–8.CrossRefGoogle Scholar
Laska, L., Badziak, J., Boody, F.P., Gammino, S., Jungwirth, K., Krasa, J., Krousky, E., Parys, P., Pfeifer, M., Rohlena, K., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J. & Wolowski, J. (2007 a). Factors influencing parameters of laser ion sources. Laser Part. Beams 25, 199205.CrossRefGoogle Scholar
Laska, L., Badziak, J., Gammino, S., Jungwirth, K., Kasperczuk, A., Krasa, J., Krousky, E., Kubes, P., Parys, P., Pfeifer, M., Pisarczyk, T., Rohlena, K., Rosinski, M., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J., Velyhan, A. & Wolowsk, J. (2007 b). The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams. Laser Part. Beams 25, 549556.CrossRefGoogle Scholar
McPherson, A., Thompson, B.D., Borisov, A.B., Boyer, K. & Rhodes, C.K. (1994). Multiphoton induced X-ray emission at 4–5 keV from Xenon atoms with multiple core vacancies. Nature 370, 631634.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Orlov, N.Y., Gus'kov, S.Y., Pikuz, S.A., Rozanov, V.B., Shelkovenko, T.A., Zmitrenko, N.V. & Hammer, D.A. (2007). Theoretical and experimental studies of the radiative properties of hot dense matter for optimizing soft X-ray sources. Laser Part. Beams 25, 415423.CrossRefGoogle Scholar
Rajeev, P.P., Taneja, P., Ayyub, P., Sandhu, A.S. & Ravindra Kumar, G. (2003). Metal nano plasmas as bright sources of hard X-ray pulses. Phys. Rev. Lett. 90, 115002/1–4.CrossRefGoogle Scholar
Varro, S. & Farkas, G. (2008). Attosecond electron pulses from interference of above-threshold de Broglie waves. Laser Part. Beams 26, 919.CrossRefGoogle Scholar
Varro, S. (2007). Linear and nonlinear absolute phase effects in interactions of ulrashort laser pulses with a metal nano-layer or with a thin plasma layer. Laser Part. Beams 25, 379390.CrossRefGoogle Scholar
Wolowski, J., Badziak, J., Borielli, A., Dhareshwar, L.J., Foldes, I., Kasperczuk, A., Krousky, Z., Laska, L., Masek, K., Mezzasalma, A., Parys, P., Pfiefer, M., Pisarczyk, T., Rosinski, M., Ryc, L., Suchanska, R., Suta, T., Torrisi, L., Ulschmied, J. & Pisarzyk, P. (2007 a). Application of laser-induced double ablation of plasma for enhanced macro particle acceleration. In Proc. of Fifth International Conference on Inertial Fusion Sciences and Application. Kobe, Japan: IFSA.CrossRefGoogle Scholar
Wolowski, J., Badziak, J., Czarnecka, A., Parys, P., Pisarek, M., Rosinski, M., Turan, R. & Yerci, S. (2007 b). Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites. Laser Part. Beams 25, 6569.CrossRefGoogle Scholar
Zweiback, J., Ditmire, T. & Perry, M.D. (1999). Femtosecond time resolved studies of the dynamics of noble gas cluster explosions. Phys Rev. A 59, R31663169.CrossRefGoogle Scholar