Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-03T08:39:23.008Z Has data issue: false hasContentIssue false

Ion emission characteristics from laser-produced plasmas with steep density gradients

Published online by Cambridge University Press:  09 March 2009

K. Rohr
Affiliation:
Universität Kaiserslautern, Fachbereich Physik, D-6750 Kaiserslautern, West-Germany
R. Dinger
Affiliation:
Universität Kaiserslautern, Fachbereich Physik, D-6750 Kaiserslautern, West-Germany
H. Weber
Affiliation:
Universität Kaiserslautern, Fachbereich Physik, D-6750 Kaiserslautern, West-Germany

Abstract

Ion emission from laser-produced plasma with small focal spots (20 μm) has been investigated for s- and p-polarization of the Nd–YAG laser at IL = 6 * 1013 W/cm2. The target has been Plexiglas (Hg, C5, O2) n, and the ion analysis has been charge, mass and velocity resolved for emission angles between 15° and 65°. It is found that additional resonance absorption mainly leads to an enhancement of the number of totally emitted ions which is essentially uniform for a large region of the velocity spectrum. The total increase in plasma expansion energy is by a factor of more than 3·5. The relatively low enhancement of the average initial temperature produces an unexpected asymptotic charge distribution with higher charges if resonance absorption is not present.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balmer, J. E. & Donaldson, T. P. 1977. Phys. Rev. Lett. 39, 1084.CrossRefGoogle Scholar
Church, P., Martin, F. & Pepin, M. 1982, J. Appl. Phys. 53, 874.CrossRefGoogle Scholar
Dinger, R., Rohr, K. & Weber, H. 1986 Laser and Particle Beams, 4, 239.CrossRefGoogle Scholar
Dinger, R., Rohr, K. & Weber, H. 1987 Laser and Particle Beams, 5, 691.CrossRefGoogle Scholar
Ehler, A. W. 1975 J. Appl. Phys. 46, 2464.CrossRefGoogle Scholar
Eidmann, K. 1975. Plasma Phys. 17, 121CrossRefGoogle Scholar
Estabrook, K. 1986, Phys. Fluids 29, 3093.CrossRefGoogle Scholar
Goforth, R. & Hammerling, P. 1976 J. Appl. Phys. 47, 3981.Google Scholar
Godwin, R. P., Sachsenmeier, R. & Sigel, R. 1977 Phys. Rev. Lett., 39, 1198.CrossRefGoogle Scholar
Grun, J., Stellingwerf, R. & Ripin, A. M. 1986, Phys. Fluids, 29, 3390.Google Scholar
Kunz, I. & Mulser, P. 1988 to be published.Google Scholar
Lewis, C. L. S. et al. 1982 J. Phys. D: Appl. Phys. 15, 69.CrossRefGoogle Scholar
Pearlman, J. S., Thomson, J. J. & Max, C. E. 1977 Phys. Rev. Lett., 38, 1397.Google Scholar
Stenz, C. et al. 1977 Journal de Phys., 38, 761.CrossRefGoogle Scholar
Wägli, P. & Donaldson, T. P. 1978, Phys. Rev. Lett., 40, 875.CrossRefGoogle Scholar